
COMPUTER ARCHITECTURE

Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz

Department 07 – Munich University of Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License. ©b



Course Organization

[I
n
te
l
D
E
,
C
C

B
Y
-S
A

2
.0
]

Central Processing

Unit (CPU)

Basics

Pipelining

Optimizations

Caches

[W
a
ll
p
a
p
er
S
a
fa
ri
,

P
u
b
li
c
D
o
m
a
in
]

North
Bridge

FSB

[Martyx, CC BY-SA 3.0]

DDR

Main Memory

[r
w
in
d
r,

P
ix
a
b
ay
]

PCIe

GPU

South
Bridge

[M
ic
h
a
el
O
p
d
en

a
ck
er
,

C
C

B
Y
-S
A

4
.0
] SATA

Peripherals

[G
eo
rg
e
H
o
d
a
n
,
C
C
0
]

USB

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 2 ©b



Course Organization

[I
n
te
l
D
E
,
C
C

B
Y
-S
A

2
.0
]

Central Processing

Unit (CPU)

Basics

Pipelining

Optimizations

Caches

[W
a
ll
p
a
p
er
S
a
fa
ri
,

P
u
b
li
c
D
o
m
a
in
]

North
Bridge

FSB

[Martyx, CC BY-SA 3.0]

DDR

Main Memory

[r
w
in
d
r,

P
ix
a
b
ay
]

PCIe

GPU

South
Bridge

[M
ic
h
a
el
O
p
d
en

a
ck
er
,

C
C

B
Y
-S
A

4
.0
] SATA

Peripherals

[G
eo
rg
e
H
o
d
a
n
,
C
C
0
]

USB

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 2 ©b



Learning Objectives

Understand the role of the instruction set architecture

Design programs in assembly/machine code from an instruction set architecture

Apply rules and definition from an instruction set architecture in software development

Understand the general principle and draw conclusions from it for practical tasks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 3 ©b



Learning Objectives

Understand the role of the instruction set architecture

Design programs in assembly/machine code from an instruction set architecture

Apply rules and definition from an instruction set architecture in software development

Understand the general principle and draw conclusions from it for practical tasks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 3 ©b



Learning Objectives

Understand the role of the instruction set architecture

Design programs in assembly/machine code from an instruction set architecture

Apply rules and definition from an instruction set architecture in software development

Understand the general principle and draw conclusions from it for practical tasks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 3 ©b



Learning Objectives

Understand the role of the instruction set architecture

Design programs in assembly/machine code from an instruction set architecture

Apply rules and definition from an instruction set architecture in software development

Understand the general principle and draw conclusions from it for practical tasks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 3 ©b



Von Neumann Architecture

Description of generic computer

Computer organization independent of
problem

Memory

• Intermediate results
• Stored programs
• Organized in homogeneous cells
• Linearly addressed (data and program)

Program counter in ”central control” points
to next instruction

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 4 ©b



Von Neumann Architecture

Description of generic computer

Computer organization independent of
problem

Memory

• Intermediate results
• Stored programs
• Organized in homogeneous cells
• Linearly addressed (data and program)

Program counter in ”central control” points
to next instruction

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 4 ©b



Von Neumann Architecture

Description of generic computer

Computer organization independent of
problem

Memory

• Intermediate results
• Stored programs
• Organized in homogeneous cells
• Linearly addressed (data and program)

Program counter in ”central control” points
to next instruction

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 4 ©b



Von Neumann Architecture

Description of generic computer

Computer organization independent of
problem

Memory
• Intermediate results

• Stored programs
• Organized in homogeneous cells
• Linearly addressed (data and program)

Program counter in ”central control” points
to next instruction

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 4 ©b



Von Neumann Architecture

Description of generic computer

Computer organization independent of
problem

Memory
• Intermediate results
• Stored programs

• Organized in homogeneous cells
• Linearly addressed (data and program)

Program counter in ”central control” points
to next instruction

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 4 ©b



Von Neumann Architecture

Description of generic computer

Computer organization independent of
problem

Memory
• Intermediate results
• Stored programs
• Organized in homogeneous cells

• Linearly addressed (data and program)

Program counter in ”central control” points
to next instruction

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 4 ©b



Von Neumann Architecture

Description of generic computer

Computer organization independent of
problem

Memory
• Intermediate results
• Stored programs
• Organized in homogeneous cells
• Linearly addressed (data and program)

Program counter in ”central control” points
to next instruction

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 4 ©b



Von Neumann Architecture

Description of generic computer

Computer organization independent of
problem

Memory
• Intermediate results
• Stored programs
• Organized in homogeneous cells
• Linearly addressed (data and program)

Program counter in ”central control” points
to next instruction

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 4 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Von Neumann Architecture

Control Flow

Load current instruction from memory

Store instruction in control register

Decode instruction

Execute instruction based on operation

Types of operations

Arithmetic and logical: Data manipulation

Transport: Transfer data between elements

Control flow: Change instruction stream

Input/Output: Communication

Input
Device

Central

Arithmetical

Central

Control

Memory

Output
Device

Arithmetic

Unit

Control Unit

Modern

naming

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 5 ©b



Instruction Processing

Remember: Microprocessor in
Computer Engineering (Technische
Informatik)

5 phases of execution

Fetch instruction

Decode instruction

Execute

Memory Access

Write Back

clk

Fetch

D
ec
o
d
e Execute

Memory
Access

W
ri
te

B
ac
k

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 6 ©b



Instruction Processing

Remember: Microprocessor in
Computer Engineering (Technische
Informatik)

5 phases of execution

Fetch instruction

Decode instruction

Execute

Memory Access

Write Back

clk

Fetch

D
ec
o
d
e Execute

Memory
Access

W
ri
te

B
ac
k

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 6 ©b



Instruction Processing

Remember: Microprocessor in
Computer Engineering (Technische
Informatik)

5 phases of execution

Fetch instruction

Decode instruction

Execute

Memory Access

Write Back

clk

Fetch

D
ec
o
d
e Execute

Memory
Access

W
ri
te

B
ac
k

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 6 ©b



Instruction Processing

Remember: Microprocessor in
Computer Engineering (Technische
Informatik)

5 phases of execution

Fetch instruction

Decode instruction

Execute

Memory Access

Write Back

clk

Fetch

D
ec
o
d
e Execute

Memory
Access

W
ri
te

B
ac
k

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 6 ©b



Instruction Processing

Remember: Microprocessor in
Computer Engineering (Technische
Informatik)

5 phases of execution

Fetch instruction

Decode instruction

Execute

Memory Access

Write Back

clk

Fetch

D
ec
o
d
e Execute

Memory
Access

W
ri
te

B
ac
k

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 6 ©b



Instruction Processing

Remember: Microprocessor in
Computer Engineering (Technische
Informatik)

5 phases of execution

Fetch instruction

Decode instruction

Execute

Memory Access

Write Back

clk

Fetch

D
ec
o
d
e Execute

Memory
Access

W
ri
te

B
ac
k

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 6 ©b



Instruction Processing

Remember: Microprocessor in
Computer Engineering (Technische
Informatik)

5 phases of execution

Fetch instruction

Decode instruction

Execute

Memory Access

Write Back

clk

Fetch

D
ec
o
d
e Execute

Memory
Access

W
ri
te

B
ac
k

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 6 ©b



Harvard Architecture

Separated data and
instruction memory

Today mostly ”modified
harvard architecture”:
Separated level 1 caches
(see later)

Control Unit
Arithmetic

Logical Unit

Instruction

Memory
Data Memory

Input
Device

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 7 ©b



Harvard Architecture

Separated data and
instruction memory

Today mostly ”modified
harvard architecture”:
Separated level 1 caches
(see later)

Control Unit
Arithmetic

Logical Unit

Instruction

Memory
Data Memory

Input
Device

Output
Device

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 7 ©b



Generic CPU Architecture

Control unit and ALU as brain
and heart of CPU

Fetch instruction stream

Diversion of (sequential)
instruction stream

Access to data memory

Temporary memory much faster

Often I/O interface

Control Unit &

Arithmetic Logical Unit

Instruction

Stream

Data

Memory

Temporary Memory

Input/Output

Devices

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 8 ©b



Generic CPU Architecture

Control unit and ALU as brain
and heart of CPU

Fetch instruction stream

Diversion of (sequential)
instruction stream

Access to data memory

Temporary memory much faster

Often I/O interface

Control Unit &

Arithmetic Logical Unit

Instruction

Stream

Data

Memory

Temporary Memory

Input/Output

Devices

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 8 ©b



Generic CPU Architecture

Control unit and ALU as brain
and heart of CPU

Fetch instruction stream

Diversion of (sequential)
instruction stream

Access to data memory

Temporary memory much faster

Often I/O interface

Control Unit &

Arithmetic Logical Unit

Instruction

Stream

Data

Memory

Temporary Memory

Input/Output

Devices

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 8 ©b



Generic CPU Architecture

Control unit and ALU as brain
and heart of CPU

Fetch instruction stream

Diversion of (sequential)
instruction stream

Access to data memory

Temporary memory much faster

Often I/O interface

Control Unit &

Arithmetic Logical Unit

Instruction

Stream

Data

Memory

Temporary Memory

Input/Output

Devices

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 8 ©b



Generic CPU Architecture

Control unit and ALU as brain
and heart of CPU

Fetch instruction stream

Diversion of (sequential)
instruction stream

Access to data memory

Temporary memory much faster

Often I/O interface

Control Unit &

Arithmetic Logical Unit

Instruction

Stream

Data

Memory

Temporary Memory

Input/Output

Devices

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 8 ©b



Generic CPU Architecture

Control unit and ALU as brain
and heart of CPU

Fetch instruction stream

Diversion of (sequential)
instruction stream

Access to data memory

Temporary memory much faster

Often I/O interface

Control Unit &

Arithmetic Logical Unit

Instruction

Stream

Data

Memory

Temporary Memory

Input/Output

Devices

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 8 ©b



Generic CPU Architecture

Control unit and ALU as brain
and heart of CPU

Fetch instruction stream

Diversion of (sequential)
instruction stream

Access to data memory

Temporary memory much faster

Often I/O interface

Control Unit &

Arithmetic Logical Unit

Instruction

Stream

Data

Memory

Temporary Memory

Input/Output

Devices

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 8 ©b



Instruction Set Architecture vs. Microarchitecture

Instruction Set Architecture (ISA)

General operation of a CPU

”Contract” with programmer/compiler

Defines instructions, states, memory access
and interface to outside world

Often many (optional) extensions

Microarchitecture

Actual implementation of the ISA

Many design alternatives and optimizations

Must obey rules set out by ISA

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 9 ©b



Instruction Set Architecture vs. Microarchitecture

Instruction Set Architecture (ISA)

General operation of a CPU

”Contract” with programmer/compiler

Defines instructions, states, memory access
and interface to outside world

Often many (optional) extensions

Microarchitecture

Actual implementation of the ISA

Many design alternatives and optimizations

Must obey rules set out by ISA

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 9 ©b



Instruction Set Architecture vs. Microarchitecture

Instruction Set Architecture (ISA)

General operation of a CPU

”Contract” with programmer/compiler

Defines instructions, states, memory access
and interface to outside world

Often many (optional) extensions

Microarchitecture

Actual implementation of the ISA

Many design alternatives and optimizations

Must obey rules set out by ISA

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 9 ©b



Instruction Set Architecture vs. Microarchitecture

Instruction Set Architecture (ISA)

General operation of a CPU

”Contract” with programmer/compiler

Defines instructions, states, memory access
and interface to outside world

Often many (optional) extensions

Microarchitecture

Actual implementation of the ISA

Many design alternatives and optimizations

Must obey rules set out by ISA

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 9 ©b



Instruction Set Architecture vs. Microarchitecture

Instruction Set Architecture (ISA)

General operation of a CPU

”Contract” with programmer/compiler

Defines instructions, states, memory access
and interface to outside world

Often many (optional) extensions

Microarchitecture

Actual implementation of the ISA

Many design alternatives and optimizations

Must obey rules set out by ISA

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 9 ©b



Instruction Set Architecture vs. Microarchitecture

Instruction Set Architecture (ISA)

General operation of a CPU

”Contract” with programmer/compiler

Defines instructions, states, memory access
and interface to outside world

Often many (optional) extensions

Microarchitecture

Actual implementation of the ISA

Many design alternatives and optimizations

Must obey rules set out by ISA

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 9 ©b



Instruction Set Architecture vs. Microarchitecture

Instruction Set Architecture (ISA)

General operation of a CPU

”Contract” with programmer/compiler

Defines instructions, states, memory access
and interface to outside world

Often many (optional) extensions

Microarchitecture

Actual implementation of the ISA

Many design alternatives and optimizations

Must obey rules set out by ISA

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 9 ©b



Instruction Set Architecture vs. Microarchitecture

Control Unit &

Arithmetic Logical Unit

Instruction

Stream

Temporary Memory

Data

Memory

Input/Output

Devices

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 10 ©b



Examples: ISA and Microarchitecture 1/3

ISA Manufacturer Microarchitecture/Product

x86

Intel 8086, 80186, 80286, 80386, 80486, P5
(Pentium), P6 (Pentium II/III)

AMD 8086, Am386, K5, K6, Athlon

VIA/Cyrix C3, C7

ia64 Intel/HP Itanium, Itanium 2, Itanium 9300

x86-64

AMD Opteron, Athlon 64, Turion, ...,
Ryzen/Epyc

Intel Pentium 4, Xeon, Atom, Core 2, ..., Can-
non Lake (e.g. Core i3 8121U)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 11 ©b



Examples: ISA and Microarchitecture 1/3

ISA Manufacturer Microarchitecture/Product

x86

Intel 8086, 80186, 80286, 80386, 80486, P5
(Pentium), P6 (Pentium II/III)

AMD 8086, Am386, K5, K6, Athlon

VIA/Cyrix C3, C7

ia64 Intel/HP Itanium, Itanium 2, Itanium 9300

x86-64

AMD Opteron, Athlon 64, Turion, ...,
Ryzen/Epyc

Intel Pentium 4, Xeon, Atom, Core 2, ..., Can-
non Lake (e.g. Core i3 8121U)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 11 ©b



Examples: ISA and Microarchitecture 1/3

ISA Manufacturer Microarchitecture/Product

x86

Intel 8086, 80186, 80286, 80386, 80486, P5
(Pentium), P6 (Pentium II/III)

AMD 8086, Am386, K5, K6, Athlon

VIA/Cyrix C3, C7

ia64 Intel/HP Itanium, Itanium 2, Itanium 9300

x86-64

AMD Opteron, Athlon 64, Turion, ...,
Ryzen/Epyc

Intel Pentium 4, Xeon, Atom, Core 2, ..., Can-
non Lake (e.g. Core i3 8121U)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 11 ©b



Examples: ISA and Microarchitecture 2/3

ISA Manufacturer Microarchitecture/Product

ARMv2, ..,
ARMv6

ARM ARM1, ARM2, ARM6, ARM7, .. ARM11

DEC StrongARM

Intel Xscale

ARMv7-A

ARM Cortex-A5, Cortex-A7, ..., Cortex-A17

Qualcomm Krait, Scorpion

Apple A6

ARMv8-A

ARM Cortex-A35, Cortex-A53, ..., Cortex-A76

Qualcomm Kryo

Apple A7, A8, A9, A10, A11, A12

Samsung M1, M2

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 12 ©b



Examples: ISA and Microarchitecture 2/3

ISA Manufacturer Microarchitecture/Product

ARMv2, ..,
ARMv6

ARM ARM1, ARM2, ARM6, ARM7, .. ARM11

DEC StrongARM

Intel Xscale

ARMv7-A

ARM Cortex-A5, Cortex-A7, ..., Cortex-A17

Qualcomm Krait, Scorpion

Apple A6

ARMv8-A

ARM Cortex-A35, Cortex-A53, ..., Cortex-A76

Qualcomm Kryo

Apple A7, A8, A9, A10, A11, A12

Samsung M1, M2

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 12 ©b



Examples: ISA and Microarchitecture 2/3

ISA Manufacturer Microarchitecture/Product

ARMv2, ..,
ARMv6

ARM ARM1, ARM2, ARM6, ARM7, .. ARM11

DEC StrongARM

Intel Xscale

ARMv7-A

ARM Cortex-A5, Cortex-A7, ..., Cortex-A17

Qualcomm Krait, Scorpion

Apple A6

ARMv8-A

ARM Cortex-A35, Cortex-A53, ..., Cortex-A76

Qualcomm Kryo

Apple A7, A8, A9, A10, A11, A12

Samsung M1, M2

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 12 ©b



Examples: ISA and Microarchitecture 3/3

ISA Manufacturer Microarchitecture/Product

MIPS64

MIPS 5K, 20K, Warrior-P, Warrior-M, ...

Broadcom BCM1125H, BCM1255

Cavium Octeon (CN30xx, CN31xx, ...), ...

m68k Motorola 680x0

SPARC V7,
V8, V9

Sun SPARC, UltraSPARC, UltraSPARC II, ...

Fujitsu SPARClite, microSPARC II, ...

VAX, Alpha,
PA-RISC,
AVR, ...

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 13 ©b



Examples: ISA and Microarchitecture 3/3

ISA Manufacturer Microarchitecture/Product

MIPS64

MIPS 5K, 20K, Warrior-P, Warrior-M, ...

Broadcom BCM1125H, BCM1255

Cavium Octeon (CN30xx, CN31xx, ...), ...

m68k Motorola 680x0

SPARC V7,
V8, V9

Sun SPARC, UltraSPARC, UltraSPARC II, ...

Fujitsu SPARClite, microSPARC II, ...

VAX, Alpha,
PA-RISC,
AVR, ...

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 13 ©b



Examples: ISA and Microarchitecture 3/3

ISA Manufacturer Microarchitecture/Product

MIPS64

MIPS 5K, 20K, Warrior-P, Warrior-M, ...

Broadcom BCM1125H, BCM1255

Cavium Octeon (CN30xx, CN31xx, ...), ...

m68k Motorola 680x0

SPARC V7,
V8, V9

Sun SPARC, UltraSPARC, UltraSPARC II, ...

Fujitsu SPARClite, microSPARC II, ...

VAX, Alpha,
PA-RISC,
AVR, ...

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 13 ©b



Examples: ISA and Microarchitecture 3/3

ISA Manufacturer Microarchitecture/Product

MIPS64

MIPS 5K, 20K, Warrior-P, Warrior-M, ...

Broadcom BCM1125H, BCM1255

Cavium Octeon (CN30xx, CN31xx, ...), ...

m68k Motorola 680x0

SPARC V7,
V8, V9

Sun SPARC, UltraSPARC, UltraSPARC II, ...

Fujitsu SPARClite, microSPARC II, ...

VAX, Alpha,
PA-RISC,
AVR, ...

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 13 ©b



RISC-V Instruction Set Architecture

Started as academic project at UC
Berkeley (Asanovic/Patterson)

Open instruction set architecture

Widely adopted in industry

Clean and clear ISA

Open and proprietary
implementations

ú Used in course labs

 

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 14 ©b



INSTRUCTION SET
ARCHITECTURE
Example:

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 15 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)

• Instruction pointer/Program counter
• Stack pointer, frame pointer
• Status registers (flags)
• Link register
• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)

• Instruction pointer/Program counter
• Stack pointer, frame pointer
• Status registers (flags)
• Link register
• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)

• Instruction pointer/Program counter
• Stack pointer, frame pointer
• Status registers (flags)
• Link register
• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)

• Instruction pointer/Program counter
• Stack pointer, frame pointer
• Status registers (flags)
• Link register
• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)

• Instruction pointer/Program counter
• Stack pointer, frame pointer
• Status registers (flags)
• Link register
• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)
• Instruction pointer/Program counter

• Stack pointer, frame pointer
• Status registers (flags)
• Link register
• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)
• Instruction pointer/Program counter
• Stack pointer, frame pointer

• Status registers (flags)
• Link register
• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)
• Instruction pointer/Program counter
• Stack pointer, frame pointer
• Status registers (flags)

• Link register
• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)
• Instruction pointer/Program counter
• Stack pointer, frame pointer
• Status registers (flags)
• Link register

• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

Registers are the fastest memory elements of a CPU (much faster than memory access)

Differentiation in ISA

General Purpose Register (GPR): Intermediate results of program execution

Special Purpose Register (SPR)/Control and Status Register (CSR)
• Instruction pointer/Program counter
• Stack pointer, frame pointer
• Status registers (flags)
• Link register
• Index register (for address calculations)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 16 ©b



Register and Register Files

32 General purpose registers

• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant

• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)

• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers

• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant

• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)

• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers
• Register 0 always tied to 0 (not writeable)

• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant

• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)

• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers
• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31

• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant

• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)

• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers
• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant

• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)

• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers
• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant

• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)

• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers
• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant
• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers

• Generalized naming of register size: XLEN

Control and Status Registers (CSR)

• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers
• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant
• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)

• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers
• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant
• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)

• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers
• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant
• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)
• Up to 4,096 registers, organized in groups

• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Register and Register Files

32 General purpose registers
• Register 0 always tied to 0 (not writeable)
• Standard naming: x0 .. x31
• Semantic use of registers (link register, stack pointer, ..), see later

Size of registers depends on ISA variant
• RV32, RV64, RV128: 32-bit, 64-bit or 128-bit registers
• Generalized naming of register size: XLEN

Control and Status Registers (CSR)
• Up to 4,096 registers, organized in groups
• Different access rights depending on processor mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 17 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution

• Instructions are stored sequentially in memory
• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream

• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution

• Instructions are stored sequentially in memory
• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream

• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution

• Instructions are stored sequentially in memory
• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream

• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution

• Instructions are stored sequentially in memory
• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream

• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution
• Instructions are stored sequentially in memory

• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream

• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution
• Instructions are stored sequentially in memory
• Program counter points to current instructions

• CPU decodes an instruction and executes it

Variation in instruction stream

• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution
• Instructions are stored sequentially in memory
• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream

• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution
• Instructions are stored sequentially in memory
• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream

• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution
• Instructions are stored sequentially in memory
• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream
• Control unit can change the program counter non-sequentially

• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution
• Instructions are stored sequentially in memory
• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream
• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls

• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instructions

Instructions are fetched by processor

Instructions are essentially data in memory:
Interpretation of instruction coding defined by ISA

Sequential execution
• Instructions are stored sequentially in memory
• Program counter points to current instructions
• CPU decodes an instruction and executes it

Variation in instruction stream
• Control unit can change the program counter non-sequentially
• Program flow: Loops, branches, function calls
• Exception handling of synchronous and asynchronous exceptions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 18 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)
3. Control flow
4. Input/Output

Operands

• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)
3. Control flow
4. Input/Output

Operands

• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions

2. Memory access (load/store)
3. Control flow
4. Input/Output

Operands

• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)

3. Control flow
4. Input/Output

Operands

• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)
3. Control flow

4. Input/Output

Operands

• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)
3. Control flow
4. Input/Output

Operands

• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)
3. Control flow
4. Input/Output

Operands

• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)
3. Control flow
4. Input/Output

Operands
• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)
3. Control flow
4. Input/Output

Operands
• Maximum number of operands per instructions

I Important for arithmetic and logical operations

I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)
3. Control flow
4. Input/Output

Operands
• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Instruction Types

Four basic types of instructions

1. Integer Computational Instructions
2. Memory access (load/store)
3. Control flow
4. Input/Output

Operands
• Maximum number of operands per instructions

I Important for arithmetic and logical operations
I Influences the length of instructions

• Maximum number of memory addresses of those operands (typical: 1)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 19 ©b



Integer Computational Instructions

Basic Addition and Subtraction

• add rd, rs1, rs2 (rd = rs1 +

rs2)
• sub rd, rs1, rs2 (rd = rs1 -

rs2)

Basic Logical Operations

Example: a = b + c - d

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Integer Computational Instructions

Basic Addition and Subtraction

• add rd, rs1, rs2 (rd = rs1 +

rs2)
• sub rd, rs1, rs2 (rd = rs1 -

rs2)

Basic Logical Operations

Example: a = b + c - d

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Integer Computational Instructions

Basic Addition and Subtraction
• add rd, rs1, rs2 (rd = rs1 +

rs2)

• sub rd, rs1, rs2 (rd = rs1 -

rs2)

Basic Logical Operations

Example: a = b + c - d

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Integer Computational Instructions

Basic Addition and Subtraction
• add rd, rs1, rs2 (rd = rs1 +

rs2)
• sub rd, rs1, rs2 (rd = rs1 -

rs2)

Basic Logical Operations

Example: a = b + c - d

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Integer Computational Instructions

Basic Addition and Subtraction
• add rd, rs1, rs2 (rd = rs1 +

rs2)
• sub rd, rs1, rs2 (rd = rs1 -

rs2)

Basic Logical Operations

Example: a = b + c - d

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Integer Computational Instructions

Basic Addition and Subtraction
• add rd, rs1, rs2 (rd = rs1 +

rs2)
• sub rd, rs1, rs2 (rd = rs1 -

rs2)

Basic Logical Operations

Example: a = b + c - d

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Integer Computational Instructions

Basic Addition and Subtraction
• add rd, rs1, rs2 (rd = rs1 +

rs2)
• sub rd, rs1, rs2 (rd = rs1 -

rs2)

Basic Logical Operations

Example: a = b + c - d

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Instruction Coding

Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21

31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode

0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 0110011

0x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 01100110x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Instruction Coding
Instructions are encoded in a unified format

Standardized fields at same positions reduce the hardware overhead

Assembler: Generate instructions from mnemonics

Example: add x9, x20, x21
31 0

0

7 Bit
0000000

21

5 Bit
10101

20

5 Bit
10100

0

3 Bit
000

9

5 Bit
01001

51

7 Bit
0110011

funct7 rs2 rs1 funct3 rd opcode
0x015A04B3

sub x9, x20, x21

0100000 10101 10100 000 01001 01100110x415A04B3

”R” Format Instruction Coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 21 ©b



Constants/Immediates

Constants are often needed Examples: Offset in data structure, loop increment, etc.

How to add a constant?

Problem with known instruction: Need constant in register. From memory?

Better solution: Encode into instructions with immediate

• addi rd, rs1, imm (rd = rs1 + imm)
• andi rd, rs1, imm (rd = rs1 & imm)
• ori rd, rs1, imm (rd = rs1 | imm)
• xori rd, rs1, imm (rd = rs1 ^ imm)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 22 ©b



Constants/Immediates

Constants are often needed Examples: Offset in data structure, loop increment, etc.

How to add a constant?

Problem with known instruction: Need constant in register. From memory?

Better solution: Encode into instructions with immediate

• addi rd, rs1, imm (rd = rs1 + imm)
• andi rd, rs1, imm (rd = rs1 & imm)
• ori rd, rs1, imm (rd = rs1 | imm)
• xori rd, rs1, imm (rd = rs1 ^ imm)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 22 ©b



Constants/Immediates

Constants are often needed Examples: Offset in data structure, loop increment, etc.

How to add a constant?

Problem with known instruction: Need constant in register. From memory?

Better solution: Encode into instructions with immediate

• addi rd, rs1, imm (rd = rs1 + imm)
• andi rd, rs1, imm (rd = rs1 & imm)
• ori rd, rs1, imm (rd = rs1 | imm)
• xori rd, rs1, imm (rd = rs1 ^ imm)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 22 ©b



Constants/Immediates

Constants are often needed Examples: Offset in data structure, loop increment, etc.

How to add a constant?

Problem with known instruction: Need constant in register. From memory?

Better solution: Encode into instructions with immediate

• addi rd, rs1, imm (rd = rs1 + imm)
• andi rd, rs1, imm (rd = rs1 & imm)
• ori rd, rs1, imm (rd = rs1 | imm)
• xori rd, rs1, imm (rd = rs1 ^ imm)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 22 ©b



Constants/Immediates

Constants are often needed Examples: Offset in data structure, loop increment, etc.

How to add a constant?

Problem with known instruction: Need constant in register. From memory?

Better solution: Encode into instructions with immediate

• addi rd, rs1, imm (rd = rs1 + imm)
• andi rd, rs1, imm (rd = rs1 & imm)
• ori rd, rs1, imm (rd = rs1 | imm)
• xori rd, rs1, imm (rd = rs1 ^ imm)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 22 ©b



Constants/Immediates

Constants are often needed Examples: Offset in data structure, loop increment, etc.

How to add a constant?

Problem with known instruction: Need constant in register. From memory?

Better solution: Encode into instructions with immediate
• addi rd, rs1, imm (rd = rs1 + imm)

• andi rd, rs1, imm (rd = rs1 & imm)
• ori rd, rs1, imm (rd = rs1 | imm)
• xori rd, rs1, imm (rd = rs1 ^ imm)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 22 ©b



Constants/Immediates

Constants are often needed Examples: Offset in data structure, loop increment, etc.

How to add a constant?

Problem with known instruction: Need constant in register. From memory?

Better solution: Encode into instructions with immediate
• addi rd, rs1, imm (rd = rs1 + imm)
• andi rd, rs1, imm (rd = rs1 & imm)

• ori rd, rs1, imm (rd = rs1 | imm)
• xori rd, rs1, imm (rd = rs1 ^ imm)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 22 ©b



Constants/Immediates

Constants are often needed Examples: Offset in data structure, loop increment, etc.

How to add a constant?

Problem with known instruction: Need constant in register. From memory?

Better solution: Encode into instructions with immediate
• addi rd, rs1, imm (rd = rs1 + imm)
• andi rd, rs1, imm (rd = rs1 & imm)
• ori rd, rs1, imm (rd = rs1 | imm)

• xori rd, rs1, imm (rd = rs1 ^ imm)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 22 ©b



Constants/Immediates

Constants are often needed Examples: Offset in data structure, loop increment, etc.

How to add a constant?

Problem with known instruction: Need constant in register. From memory?

Better solution: Encode into instructions with immediate
• addi rd, rs1, imm (rd = rs1 + imm)
• andi rd, rs1, imm (rd = rs1 & imm)
• ori rd, rs1, imm (rd = rs1 | imm)
• xori rd, rs1, imm (rd = rs1 ^ imm)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 22 ©b



Immediate Instruction Coding

Opcode and 3-bit function field at same position

Source register and destination address at same position

So called ”I”-Format

Immediate in 12 bit: Two’s complement (−211 to 211 − 1)

31 0

12 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 23 ©b



Immediate Instruction Coding

Opcode and 3-bit function field at same position

Source register and destination address at same position

So called ”I”-Format

Immediate in 12 bit: Two’s complement (−211 to 211 − 1)

31 0

12 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 23 ©b



Immediate Instruction Coding

Opcode and 3-bit function field at same position

Source register and destination address at same position

So called ”I”-Format

Immediate in 12 bit: Two’s complement (−211 to 211 − 1)

31 0

12 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 23 ©b



Immediate Instruction Coding

Opcode and 3-bit function field at same position

Source register and destination address at same position

So called ”I”-Format

Immediate in 12 bit: Two’s complement (−211 to 211 − 1)

31 0

12 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 23 ©b



Immediate Instruction Coding

Opcode and 3-bit function field at same position

Source register and destination address at same position

So called ”I”-Format

Immediate in 12 bit: Two’s complement (−211 to 211 − 1)

31 0

12 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 23 ©b



Immediate Instruction Coding

Opcode and 3-bit function field at same position

Source register and destination address at same position

So called ”I”-Format

Immediate in 12 bit: Two’s complement (−211 to 211 − 1)

31 0

12 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 23 ©b



Shift Operations

Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Shift Operations
Logical shifts:

sll rd, rs1, rs2 (rd = rs1 << rs2)

slli rd, rs1, shamt (rd = rs1 << shamt)

srl rd, rs1, rs2 (rd = rs1 >> rs2)

srli rd, rs1, shamt (rd = rs1 >> shamt)

Arithmetic shifts (preserves sign):

sra rd, rs1, rs2 (rd = rs1 >> rs2)

srai rd, rs1, shamt (rd = rs1 >> shamt)

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
type shamt rs1 funct3 rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 24 ©b



Instruction Length & Code Size

Code size is a function of

• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of

• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of

• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of

• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program

• Length of instructions (shorter ⇒ smaller code size)
(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of

• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)

• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of

• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of

• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of

• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of
• Number of operands

• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of
• Number of operands
• Number of instructions in ISA (increases opcode length)

• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of
• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of
• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length

• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of
• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length
• Common instructions in short form with less bits

• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Length & Code Size

Code size is a function of
• Number of instructions in program
• Length of instructions (shorter ⇒ smaller code size)

(RISC-V basic instruction set: 32-bit, RISC-V ”compact” extension: 16 bit)
• Density of instruction set (”more dense” ⇒ less instructions)

Instruction length is a function of
• Number of operands
• Number of instructions in ISA (increases opcode length)
• Special operands, especially constants

Often: Variable instruction length
• Common instructions in short form with less bits
• RISC-V: Compact (C) ISA extension, ARM: Thumb ISA extension

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 25 ©b



Instruction Set Complexity

Conflicting goals

More instructions in ISA ⇒ less instructions needed to complete certain task

More instructions in ISA ⇒ increased length of instructions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 26 ©b



Instruction Set Complexity

Conflicting goals

More instructions in ISA ⇒ less instructions needed to complete certain task

More instructions in ISA ⇒ increased length of instructions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 26 ©b



Instruction Set Complexity

Conflicting goals

More instructions in ISA ⇒ less instructions needed to complete certain task

More instructions in ISA ⇒ increased length of instructions

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 26 ©b



Instruction Set Complexity: CISC

Complex Instruction Set Computer

Instructions cover multiple operations

Example:

1. Load data from memory
2. Arithmetic operation with two registers and this data
3. Write other register value to memory address computed by this operation
4. Increment value in register

Problems: Hardware complexity

Examples: x86, most computers until 1990s

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 27 ©b



Instruction Set Complexity: CISC

Complex Instruction Set Computer

Instructions cover multiple operations

Example:

1. Load data from memory
2. Arithmetic operation with two registers and this data
3. Write other register value to memory address computed by this operation
4. Increment value in register

Problems: Hardware complexity

Examples: x86, most computers until 1990s

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 27 ©b



Instruction Set Complexity: CISC

Complex Instruction Set Computer

Instructions cover multiple operations

Example:

1. Load data from memory
2. Arithmetic operation with two registers and this data
3. Write other register value to memory address computed by this operation
4. Increment value in register

Problems: Hardware complexity

Examples: x86, most computers until 1990s

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 27 ©b



Instruction Set Complexity: CISC

Complex Instruction Set Computer

Instructions cover multiple operations

Example:

1. Load data from memory

2. Arithmetic operation with two registers and this data
3. Write other register value to memory address computed by this operation
4. Increment value in register

Problems: Hardware complexity

Examples: x86, most computers until 1990s

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 27 ©b



Instruction Set Complexity: CISC

Complex Instruction Set Computer

Instructions cover multiple operations

Example:

1. Load data from memory
2. Arithmetic operation with two registers and this data

3. Write other register value to memory address computed by this operation
4. Increment value in register

Problems: Hardware complexity

Examples: x86, most computers until 1990s

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 27 ©b



Instruction Set Complexity: CISC

Complex Instruction Set Computer

Instructions cover multiple operations

Example:

1. Load data from memory
2. Arithmetic operation with two registers and this data
3. Write other register value to memory address computed by this operation

4. Increment value in register

Problems: Hardware complexity

Examples: x86, most computers until 1990s

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 27 ©b



Instruction Set Complexity: CISC

Complex Instruction Set Computer

Instructions cover multiple operations

Example:

1. Load data from memory
2. Arithmetic operation with two registers and this data
3. Write other register value to memory address computed by this operation
4. Increment value in register

Problems: Hardware complexity

Examples: x86, most computers until 1990s

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 27 ©b



Instruction Set Complexity: CISC

Complex Instruction Set Computer

Instructions cover multiple operations

Example:

1. Load data from memory
2. Arithmetic operation with two registers and this data
3. Write other register value to memory address computed by this operation
4. Increment value in register

Problems: Hardware complexity

Examples: x86, most computers until 1990s

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 27 ©b



Instruction Set Complexity: CISC

Complex Instruction Set Computer

Instructions cover multiple operations

Example:

1. Load data from memory
2. Arithmetic operation with two registers and this data
3. Write other register value to memory address computed by this operation
4. Increment value in register

Problems: Hardware complexity

Examples: x86, most computers until 1990s

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 27 ©b



Instruction Set Complexity: RISC

Reduced Instruction Set Computer

Small number of instructions, low instruction complexity

Limited number of operands: max. 3 (destination + 2 sources)

Most instructions are register-register operations

Load-Store architectures: only a few, simple memory-register instructions

Introduced as Berkeley RISC and Stanford MIPS in the 1980s

Examples that follow the RISC paradigm: ARM, SPARC, MIPS, PowerPC, RISC-V

Under the hood modern CISC processors are actually RISC processors:
newline Translation of CISC commands into RISC microcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 28 ©b



Instruction Set Complexity: RISC

Reduced Instruction Set Computer

Small number of instructions, low instruction complexity

Limited number of operands: max. 3 (destination + 2 sources)

Most instructions are register-register operations

Load-Store architectures: only a few, simple memory-register instructions

Introduced as Berkeley RISC and Stanford MIPS in the 1980s

Examples that follow the RISC paradigm: ARM, SPARC, MIPS, PowerPC, RISC-V

Under the hood modern CISC processors are actually RISC processors:
newline Translation of CISC commands into RISC microcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 28 ©b



Instruction Set Complexity: RISC

Reduced Instruction Set Computer

Small number of instructions, low instruction complexity

Limited number of operands: max. 3 (destination + 2 sources)

Most instructions are register-register operations

Load-Store architectures: only a few, simple memory-register instructions

Introduced as Berkeley RISC and Stanford MIPS in the 1980s

Examples that follow the RISC paradigm: ARM, SPARC, MIPS, PowerPC, RISC-V

Under the hood modern CISC processors are actually RISC processors:
newline Translation of CISC commands into RISC microcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 28 ©b



Instruction Set Complexity: RISC

Reduced Instruction Set Computer

Small number of instructions, low instruction complexity

Limited number of operands: max. 3 (destination + 2 sources)

Most instructions are register-register operations

Load-Store architectures: only a few, simple memory-register instructions

Introduced as Berkeley RISC and Stanford MIPS in the 1980s

Examples that follow the RISC paradigm: ARM, SPARC, MIPS, PowerPC, RISC-V

Under the hood modern CISC processors are actually RISC processors:
newline Translation of CISC commands into RISC microcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 28 ©b



Instruction Set Complexity: RISC

Reduced Instruction Set Computer

Small number of instructions, low instruction complexity

Limited number of operands: max. 3 (destination + 2 sources)

Most instructions are register-register operations

Load-Store architectures: only a few, simple memory-register instructions

Introduced as Berkeley RISC and Stanford MIPS in the 1980s

Examples that follow the RISC paradigm: ARM, SPARC, MIPS, PowerPC, RISC-V

Under the hood modern CISC processors are actually RISC processors:
newline Translation of CISC commands into RISC microcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 28 ©b



Instruction Set Complexity: RISC

Reduced Instruction Set Computer

Small number of instructions, low instruction complexity

Limited number of operands: max. 3 (destination + 2 sources)

Most instructions are register-register operations

Load-Store architectures: only a few, simple memory-register instructions

Introduced as Berkeley RISC and Stanford MIPS in the 1980s

Examples that follow the RISC paradigm: ARM, SPARC, MIPS, PowerPC, RISC-V

Under the hood modern CISC processors are actually RISC processors:
newline Translation of CISC commands into RISC microcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 28 ©b



Instruction Set Complexity: RISC

Reduced Instruction Set Computer

Small number of instructions, low instruction complexity

Limited number of operands: max. 3 (destination + 2 sources)

Most instructions are register-register operations

Load-Store architectures: only a few, simple memory-register instructions

Introduced as Berkeley RISC and Stanford MIPS in the 1980s

Examples that follow the RISC paradigm: ARM, SPARC, MIPS, PowerPC, RISC-V

Under the hood modern CISC processors are actually RISC processors:
newline Translation of CISC commands into RISC microcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 28 ©b



Instruction Set Complexity: RISC

Reduced Instruction Set Computer

Small number of instructions, low instruction complexity

Limited number of operands: max. 3 (destination + 2 sources)

Most instructions are register-register operations

Load-Store architectures: only a few, simple memory-register instructions

Introduced as Berkeley RISC and Stanford MIPS in the 1980s

Examples that follow the RISC paradigm: ARM, SPARC, MIPS, PowerPC, RISC-V

Under the hood modern CISC processors are actually RISC processors:
newline Translation of CISC commands into RISC microcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 28 ©b



Instruction Set Complexity: Video

Krste Asanovic - RISC-V: Instruction Sets
Want To Be Free, MeetBSD 2016

https://youtu.be/QTYiH1Y5UV0?t=371

(6:11 to 9:16 are of interest in this context, but the entire video is a great watch!)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 29 ©b

https://youtu.be/QTYiH1Y5UV0?t=371


Memory Access

Transport data between memory and registers

Main memory is required as temporary storage, registers are limited

Difference main memory and long time storage (disk) later in course

Properties of memory access (endianess, alignment) and operation (adressing modes,
instructions)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 30 ©b



Memory Access

Transport data between memory and registers

Main memory is required as temporary storage, registers are limited

Difference main memory and long time storage (disk) later in course

Properties of memory access (endianess, alignment) and operation (adressing modes,
instructions)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 30 ©b



Memory Access

Transport data between memory and registers

Main memory is required as temporary storage, registers are limited

Difference main memory and long time storage (disk) later in course

Properties of memory access (endianess, alignment) and operation (adressing modes,
instructions)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 30 ©b



Memory Access

Transport data between memory and registers

Main memory is required as temporary storage, registers are limited

Difference main memory and long time storage (disk) later in course

Properties of memory access (endianess, alignment) and operation (adressing modes,
instructions)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 30 ©b



Memory Access

Transport data between memory and registers

Main memory is required as temporary storage, registers are limited

Difference main memory and long time storage (disk) later in course

Properties of memory access (endianess, alignment) and operation (adressing modes,
instructions)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 30 ©b



Memory Access: Endianess

Order of data in memory

Big Endian

• Byte with most significant bit at lowest memory address
• Can be found in: AVR32 (Arduino), network protocols

Little Endian

• Byte with most significant bit at highest memory address
• Can be found in: x86, x86-64, ARM, RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Memory Access: Endianess

Order of data in memory

Big Endian

• Byte with most significant bit at lowest memory address
• Can be found in: AVR32 (Arduino), network protocols

Little Endian

• Byte with most significant bit at highest memory address
• Can be found in: x86, x86-64, ARM, RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Memory Access: Endianess

Order of data in memory

Big Endian

• Byte with most significant bit at lowest memory address
• Can be found in: AVR32 (Arduino), network protocols

Little Endian

• Byte with most significant bit at highest memory address
• Can be found in: x86, x86-64, ARM, RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Memory Access: Endianess

Order of data in memory

Big Endian
• Byte with most significant bit at lowest memory address

• Can be found in: AVR32 (Arduino), network protocols

Little Endian

• Byte with most significant bit at highest memory address
• Can be found in: x86, x86-64, ARM, RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Memory Access: Endianess

Order of data in memory

Big Endian
• Byte with most significant bit at lowest memory address
• Can be found in: AVR32 (Arduino), network protocols

Little Endian

• Byte with most significant bit at highest memory address
• Can be found in: x86, x86-64, ARM, RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Memory Access: Endianess

Order of data in memory

Big Endian
• Byte with most significant bit at lowest memory address
• Can be found in: AVR32 (Arduino), network protocols

Little Endian

• Byte with most significant bit at highest memory address
• Can be found in: x86, x86-64, ARM, RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Memory Access: Endianess

Order of data in memory

Big Endian
• Byte with most significant bit at lowest memory address
• Can be found in: AVR32 (Arduino), network protocols

Little Endian
• Byte with most significant bit at highest memory address

• Can be found in: x86, x86-64, ARM, RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Memory Access: Endianess

Order of data in memory

Big Endian
• Byte with most significant bit at lowest memory address
• Can be found in: AVR32 (Arduino), network protocols

Little Endian
• Byte with most significant bit at highest memory address
• Can be found in: x86, x86-64, ARM, RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Memory Access: Granularity and Alignment

Granularity of memory and memory access

• Memory organized as blocks: 1 Byte, 2 Byte, 4 Byte, 8 Byte
• Transport between register and these blocks in memory
• Often: Memory block size == XLEN

Alignment: How data is stored in memory

• Data structures can be arbitrarily stored in memory
• Alignment: Base address and size of data item
• A data item is misaligned when it spans multiple memory blocks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 32 ©b



Memory Access: Granularity and Alignment

Granularity of memory and memory access

• Memory organized as blocks: 1 Byte, 2 Byte, 4 Byte, 8 Byte
• Transport between register and these blocks in memory
• Often: Memory block size == XLEN

Alignment: How data is stored in memory

• Data structures can be arbitrarily stored in memory
• Alignment: Base address and size of data item
• A data item is misaligned when it spans multiple memory blocks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 32 ©b



Memory Access: Granularity and Alignment

Granularity of memory and memory access
• Memory organized as blocks: 1 Byte, 2 Byte, 4 Byte, 8 Byte

• Transport between register and these blocks in memory
• Often: Memory block size == XLEN

Alignment: How data is stored in memory

• Data structures can be arbitrarily stored in memory
• Alignment: Base address and size of data item
• A data item is misaligned when it spans multiple memory blocks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 32 ©b



Memory Access: Granularity and Alignment

Granularity of memory and memory access
• Memory organized as blocks: 1 Byte, 2 Byte, 4 Byte, 8 Byte
• Transport between register and these blocks in memory

• Often: Memory block size == XLEN

Alignment: How data is stored in memory

• Data structures can be arbitrarily stored in memory
• Alignment: Base address and size of data item
• A data item is misaligned when it spans multiple memory blocks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 32 ©b



Memory Access: Granularity and Alignment

Granularity of memory and memory access
• Memory organized as blocks: 1 Byte, 2 Byte, 4 Byte, 8 Byte
• Transport between register and these blocks in memory
• Often: Memory block size == XLEN

Alignment: How data is stored in memory

• Data structures can be arbitrarily stored in memory
• Alignment: Base address and size of data item
• A data item is misaligned when it spans multiple memory blocks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 32 ©b



Memory Access: Granularity and Alignment

Granularity of memory and memory access
• Memory organized as blocks: 1 Byte, 2 Byte, 4 Byte, 8 Byte
• Transport between register and these blocks in memory
• Often: Memory block size == XLEN

Alignment: How data is stored in memory

• Data structures can be arbitrarily stored in memory
• Alignment: Base address and size of data item
• A data item is misaligned when it spans multiple memory blocks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 32 ©b



Memory Access: Granularity and Alignment

Granularity of memory and memory access
• Memory organized as blocks: 1 Byte, 2 Byte, 4 Byte, 8 Byte
• Transport between register and these blocks in memory
• Often: Memory block size == XLEN

Alignment: How data is stored in memory
• Data structures can be arbitrarily stored in memory

• Alignment: Base address and size of data item
• A data item is misaligned when it spans multiple memory blocks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 32 ©b



Memory Access: Granularity and Alignment

Granularity of memory and memory access
• Memory organized as blocks: 1 Byte, 2 Byte, 4 Byte, 8 Byte
• Transport between register and these blocks in memory
• Often: Memory block size == XLEN

Alignment: How data is stored in memory
• Data structures can be arbitrarily stored in memory
• Alignment: Base address and size of data item

• A data item is misaligned when it spans multiple memory blocks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 32 ©b



Memory Access: Granularity and Alignment

Granularity of memory and memory access
• Memory organized as blocks: 1 Byte, 2 Byte, 4 Byte, 8 Byte
• Transport between register and these blocks in memory
• Often: Memory block size == XLEN

Alignment: How data is stored in memory
• Data structures can be arbitrarily stored in memory
• Alignment: Base address and size of data item
• A data item is misaligned when it spans multiple memory blocks

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 32 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Alignment: Example

0x0000

0x0004

0x0008

0x000c

0x0010

0x0014

Memory

0123

struct {

uint32_t A;

uint8_t B;

uint32_t C;

};

Data Structure

x1

x2

x3

Register

store at
0x0008

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 33 ©b



Memory Address: Addressing Modes

Generally three options where operands are loaded from and results are stored

1. From the instruction word:
Immediate in arithmetic/logical operation, offsets

2. From a register

3. From memory:
Memory address that actual access is to: effective address

Example Motorola 68000 ”full-relative mode”:

SUB 5(A3,D0), (A1) ú Mem[A1] = Mem[A1] - Mem[A3+D0+5]

RISC concept limits memory operands to transport operations (load-store architecture)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 34 ©b



Memory Address: Addressing Modes

Generally three options where operands are loaded from and results are stored

1. From the instruction word:
Immediate in arithmetic/logical operation, offsets

2. From a register

3. From memory:
Memory address that actual access is to: effective address

Example Motorola 68000 ”full-relative mode”:

SUB 5(A3,D0), (A1) ú Mem[A1] = Mem[A1] - Mem[A3+D0+5]

RISC concept limits memory operands to transport operations (load-store architecture)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 34 ©b



Memory Address: Addressing Modes

Generally three options where operands are loaded from and results are stored

1. From the instruction word:
Immediate in arithmetic/logical operation, offsets

2. From a register

3. From memory:
Memory address that actual access is to: effective address

Example Motorola 68000 ”full-relative mode”:

SUB 5(A3,D0), (A1) ú Mem[A1] = Mem[A1] - Mem[A3+D0+5]

RISC concept limits memory operands to transport operations (load-store architecture)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 34 ©b



Memory Address: Addressing Modes

Generally three options where operands are loaded from and results are stored

1. From the instruction word:
Immediate in arithmetic/logical operation, offsets

2. From a register

3. From memory:
Memory address that actual access is to: effective address

Example Motorola 68000 ”full-relative mode”:

SUB 5(A3,D0), (A1) ú Mem[A1] = Mem[A1] - Mem[A3+D0+5]

RISC concept limits memory operands to transport operations (load-store architecture)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 34 ©b



Memory Address: Addressing Modes

Generally three options where operands are loaded from and results are stored

1. From the instruction word:
Immediate in arithmetic/logical operation, offsets

2. From a register

3. From memory:
Memory address that actual access is to: effective address

Example Motorola 68000 ”full-relative mode”:

SUB 5(A3,D0), (A1) ú Mem[A1] = Mem[A1] - Mem[A3+D0+5]

RISC concept limits memory operands to transport operations (load-store architecture)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 34 ©b



Memory Address: Addressing Modes

Generally three options where operands are loaded from and results are stored

1. From the instruction word:
Immediate in arithmetic/logical operation, offsets

2. From a register

3. From memory:
Memory address that actual access is to: effective address

Example Motorola 68000 ”full-relative mode”:

SUB 5(A3,D0), (A1) ú Mem[A1] = Mem[A1] - Mem[A3+D0+5]

RISC concept limits memory operands to transport operations (load-store architecture)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 34 ©b



Memory Address: Addressing Modes

Generally three options where operands are loaded from and results are stored

1. From the instruction word:
Immediate in arithmetic/logical operation, offsets

2. From a register

3. From memory:
Memory address that actual access is to: effective address

Example Motorola 68000 ”full-relative mode”:

SUB 5(A3,D0), (A1) ú Mem[A1] = Mem[A1] - Mem[A3+D0+5]

RISC concept limits memory operands to transport operations (load-store architecture)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 34 ©b



Memory Access in

Two adressing modes

• Base-and-offset addressing mode for data accesses
immediate rs1 funct3 rd opcoderegister (rs1)

+ memory address

• PC-relative addressing mode for jumps
immediate rs1 funct3 rd opcodeprogram counter

+ memory address

No alignment required, either hardware supports misaligned or software emulation

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 35 ©b



Memory Access in

Two adressing modes

• Base-and-offset addressing mode for data accesses
immediate rs1 funct3 rd opcoderegister (rs1)

+ memory address

• PC-relative addressing mode for jumps
immediate rs1 funct3 rd opcodeprogram counter

+ memory address

No alignment required, either hardware supports misaligned or software emulation

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 35 ©b



Memory Access in

Two adressing modes
• Base-and-offset addressing mode for data accesses

immediate rs1 funct3 rd opcoderegister (rs1)

+ memory address

• PC-relative addressing mode for jumps
immediate rs1 funct3 rd opcodeprogram counter

+ memory address

No alignment required, either hardware supports misaligned or software emulation

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 35 ©b



Memory Access in

Two adressing modes
• Base-and-offset addressing mode for data accesses

immediate rs1 funct3 rd opcoderegister (rs1)

+ memory address

• PC-relative addressing mode for jumps
immediate rs1 funct3 rd opcodeprogram counter

+ memory address

No alignment required, either hardware supports misaligned or software emulation

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 35 ©b



Memory Access in

Two adressing modes
• Base-and-offset addressing mode for data accesses

immediate rs1 funct3 rd opcoderegister (rs1)

+ memory address

• PC-relative addressing mode for jumps
immediate rs1 funct3 rd opcodeprogram counter

+ memory address

No alignment required, either hardware supports misaligned or software emulation

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 35 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness

• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})
• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})
• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})
• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})
• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})
• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})
• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness

• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})
• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})
• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})
• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})
• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})
• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})
• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness
• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})
• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})
• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})
• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})
• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})
• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness
• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})
• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})

• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})
• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})
• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})
• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})
• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness
• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})
• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})
• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})

• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})
• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})
• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})
• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness
• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})
• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})
• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})
• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})

• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})
• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})
• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness
• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})
• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})
• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})
• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})
• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})

• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})
• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness
• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})
• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})
• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})
• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})
• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})
• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})

• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness
• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})
• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})
• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})
• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})
• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})
• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})
• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Load Instructions

Different granularities (byte, half-word, word, double-word) and signedness
• lb rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})
• lbu rd, imm(rs1) (rd = {0,Mem[rs1+imm](7:0)})
• lh rd, imm(rs1) (rd = {sign,Mem[rs1+imm](15:0)})
• lhu rd, imm(rs1) (rd = {0,Mem[rs1+imm](15:0)})
• lw rd, imm(rs1) (rd = {sign,Mem[rs1+imm](31:0)})
• lwu rd, imm(rs1) (rd = {0,Mem[rs1+imm](31:0)})
• ld rd, imm(rs1) (rd = {sign,Mem[rs1+imm](7:0)})

Immediate (”I”) instruction coding

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 36 ©b



Memory Access: Store Instructions

Notation similar to load instructions

• sb rs1, imm(rs2) (Mem[rs1+imm](7:0) = rs2(7:0))
• sh rs1, imm(rs2) (Mem[rs1+imm](15:0) = rs2(15:0))
• sw rs1, imm(rs2) (Mem[rs1+imm](31:0) = rs2(31:0))
• sd rs1, imm(rs2) (Mem[rs1+imm](63:0) = rs2(63:0))

Special instruction format

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs2 rs1 funct3 imm. opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 37 ©b



Memory Access: Store Instructions

Notation similar to load instructions

• sb rs1, imm(rs2) (Mem[rs1+imm](7:0) = rs2(7:0))
• sh rs1, imm(rs2) (Mem[rs1+imm](15:0) = rs2(15:0))
• sw rs1, imm(rs2) (Mem[rs1+imm](31:0) = rs2(31:0))
• sd rs1, imm(rs2) (Mem[rs1+imm](63:0) = rs2(63:0))

Special instruction format

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs2 rs1 funct3 imm. opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 37 ©b



Memory Access: Store Instructions

Notation similar to load instructions
• sb rs1, imm(rs2) (Mem[rs1+imm](7:0) = rs2(7:0))

• sh rs1, imm(rs2) (Mem[rs1+imm](15:0) = rs2(15:0))
• sw rs1, imm(rs2) (Mem[rs1+imm](31:0) = rs2(31:0))
• sd rs1, imm(rs2) (Mem[rs1+imm](63:0) = rs2(63:0))

Special instruction format

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs2 rs1 funct3 imm. opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 37 ©b



Memory Access: Store Instructions

Notation similar to load instructions
• sb rs1, imm(rs2) (Mem[rs1+imm](7:0) = rs2(7:0))
• sh rs1, imm(rs2) (Mem[rs1+imm](15:0) = rs2(15:0))

• sw rs1, imm(rs2) (Mem[rs1+imm](31:0) = rs2(31:0))
• sd rs1, imm(rs2) (Mem[rs1+imm](63:0) = rs2(63:0))

Special instruction format

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs2 rs1 funct3 imm. opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 37 ©b



Memory Access: Store Instructions

Notation similar to load instructions
• sb rs1, imm(rs2) (Mem[rs1+imm](7:0) = rs2(7:0))
• sh rs1, imm(rs2) (Mem[rs1+imm](15:0) = rs2(15:0))
• sw rs1, imm(rs2) (Mem[rs1+imm](31:0) = rs2(31:0))

• sd rs1, imm(rs2) (Mem[rs1+imm](63:0) = rs2(63:0))

Special instruction format

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs2 rs1 funct3 imm. opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 37 ©b



Memory Access: Store Instructions

Notation similar to load instructions
• sb rs1, imm(rs2) (Mem[rs1+imm](7:0) = rs2(7:0))
• sh rs1, imm(rs2) (Mem[rs1+imm](15:0) = rs2(15:0))
• sw rs1, imm(rs2) (Mem[rs1+imm](31:0) = rs2(31:0))
• sd rs1, imm(rs2) (Mem[rs1+imm](63:0) = rs2(63:0))

Special instruction format

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs2 rs1 funct3 imm. opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 37 ©b



Memory Access: Store Instructions

Notation similar to load instructions
• sb rs1, imm(rs2) (Mem[rs1+imm](7:0) = rs2(7:0))
• sh rs1, imm(rs2) (Mem[rs1+imm](15:0) = rs2(15:0))
• sw rs1, imm(rs2) (Mem[rs1+imm](31:0) = rs2(31:0))
• sd rs1, imm(rs2) (Mem[rs1+imm](63:0) = rs2(63:0))

Special instruction format

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs2 rs1 funct3 imm. opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 37 ©b



Memory Access: Store Instructions

Notation similar to load instructions
• sb rs1, imm(rs2) (Mem[rs1+imm](7:0) = rs2(7:0))
• sh rs1, imm(rs2) (Mem[rs1+imm](15:0) = rs2(15:0))
• sw rs1, imm(rs2) (Mem[rs1+imm](31:0) = rs2(31:0))
• sd rs1, imm(rs2) (Mem[rs1+imm](63:0) = rs2(63:0))

Special instruction format

31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
immediate rs2 rs1 funct3 imm. opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 37 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes

• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications

• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes

• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications

• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes

• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications

• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations

• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications

• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag

• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications

• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)

• Commonly used for control flow instructions (see later)

Predications

• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications

• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications

• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications
• Execute operation only if flag is set

• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications
• Execute operation only if flag is set
• Alternative to control flow instruction

• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications
• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)

• ARM: Most instructions have cond field
in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications
• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparisons

Comparisons are needed in programming (depend execution on data)

Condition Codes
• Flags that are implicitly set by arithmetic or logical operations
• Examples: Zero flag, Carry flag, Negative flag, Overflow flag
• Those flags are architecture state (part of state registers)
• Commonly used for control flow instructions (see later)

Predications
• Execute operation only if flag is set
• Alternative to control flow instruction
• x86: CMOV instruction (conditional move)
• ARM: Most instructions have cond field

in machine code (mnemonic: suffix)

cmp r1, r2

subgt r1, r1, r2

ARM Predication

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 38 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0

• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”

• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0

• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”

• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0

• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”

• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)

• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”

• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)

• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”

• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)

• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”

• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”

• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”

• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”
• Remember: Limited coding space

• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”
• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”
• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy

I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”
• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Comparison in

RISC-V does not have condition codes or predication

Instructions to set rd to 1 iff condition is true, else 0
• slt rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0)
• sltu rd, rs1, rs2 (rd = (rs1<rs2) ? 1 : 0, unsigned)
• slti rd, rs1, imm (rd = (rs1<imm) ? 1 : 0)
• sltiu rd, rs1, imm (rd = (rs1<imm) ? 1 : 0, unsigned)

Reasoning why only ”less than”
• Remember: Limited coding space
• Set less than considered most useful

I Greater than and comparisons to zero are easy
I Typical boundary checks

• Observation: Other comparisons (==, <=, >=) commonly used with branches

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 39 ©b



Control Transfer Instructions

Change of instruction stream

Need to change the program counter

Unconditional control transfer instructions (jumps), example: function calls

Conditional control transfer instructions (branches), example: loops, if-then-else

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 40 ©b



Control Transfer Instructions

Change of instruction stream

Need to change the program counter

Unconditional control transfer instructions (jumps), example: function calls

Conditional control transfer instructions (branches), example: loops, if-then-else

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 40 ©b



Control Transfer Instructions

Change of instruction stream

Need to change the program counter

Unconditional control transfer instructions (jumps), example: function calls

Conditional control transfer instructions (branches), example: loops, if-then-else

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 40 ©b



Control Transfer Instructions

Change of instruction stream

Need to change the program counter

Unconditional control transfer instructions (jumps), example: function calls

Conditional control transfer instructions (branches), example: loops, if-then-else

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 40 ©b



Control Transfer Instructions

Change of instruction stream

Need to change the program counter

Unconditional control transfer instructions (jumps), example: function calls

Conditional control transfer instructions (branches), example: loops, if-then-else

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 40 ©b



Branches in

Comparison of two registers and change program counter iff condition is met

• beq rs1, rs2, offset (if rs1==rs2 then pc+=offset)
• bne rs1, rs2, offset (if rs1!=rs2 then pc+=offset)
• blt rs1, rs2, offset (if rs1<rs2 then pc+=offset)
• bge rs1, rs2, offset (if rs1>=rs2 then pc+=offset)
• bltu and bgeu accordingly

”B” Instruction format
31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
imm rs2 rs1 funct3 imm opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 41 ©b



Branches in

Comparison of two registers and change program counter iff condition is met

• beq rs1, rs2, offset (if rs1==rs2 then pc+=offset)
• bne rs1, rs2, offset (if rs1!=rs2 then pc+=offset)
• blt rs1, rs2, offset (if rs1<rs2 then pc+=offset)
• bge rs1, rs2, offset (if rs1>=rs2 then pc+=offset)
• bltu and bgeu accordingly

”B” Instruction format
31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
imm rs2 rs1 funct3 imm opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 41 ©b



Branches in

Comparison of two registers and change program counter iff condition is met
• beq rs1, rs2, offset (if rs1==rs2 then pc+=offset)

• bne rs1, rs2, offset (if rs1!=rs2 then pc+=offset)
• blt rs1, rs2, offset (if rs1<rs2 then pc+=offset)
• bge rs1, rs2, offset (if rs1>=rs2 then pc+=offset)
• bltu and bgeu accordingly

”B” Instruction format
31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
imm rs2 rs1 funct3 imm opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 41 ©b



Branches in

Comparison of two registers and change program counter iff condition is met
• beq rs1, rs2, offset (if rs1==rs2 then pc+=offset)
• bne rs1, rs2, offset (if rs1!=rs2 then pc+=offset)

• blt rs1, rs2, offset (if rs1<rs2 then pc+=offset)
• bge rs1, rs2, offset (if rs1>=rs2 then pc+=offset)
• bltu and bgeu accordingly

”B” Instruction format
31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
imm rs2 rs1 funct3 imm opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 41 ©b



Branches in

Comparison of two registers and change program counter iff condition is met
• beq rs1, rs2, offset (if rs1==rs2 then pc+=offset)
• bne rs1, rs2, offset (if rs1!=rs2 then pc+=offset)
• blt rs1, rs2, offset (if rs1<rs2 then pc+=offset)

• bge rs1, rs2, offset (if rs1>=rs2 then pc+=offset)
• bltu and bgeu accordingly

”B” Instruction format
31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
imm rs2 rs1 funct3 imm opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 41 ©b



Branches in

Comparison of two registers and change program counter iff condition is met
• beq rs1, rs2, offset (if rs1==rs2 then pc+=offset)
• bne rs1, rs2, offset (if rs1!=rs2 then pc+=offset)
• blt rs1, rs2, offset (if rs1<rs2 then pc+=offset)
• bge rs1, rs2, offset (if rs1>=rs2 then pc+=offset)

• bltu and bgeu accordingly

”B” Instruction format
31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
imm rs2 rs1 funct3 imm opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 41 ©b



Branches in

Comparison of two registers and change program counter iff condition is met
• beq rs1, rs2, offset (if rs1==rs2 then pc+=offset)
• bne rs1, rs2, offset (if rs1!=rs2 then pc+=offset)
• blt rs1, rs2, offset (if rs1<rs2 then pc+=offset)
• bge rs1, rs2, offset (if rs1>=rs2 then pc+=offset)
• bltu and bgeu accordingly

”B” Instruction format
31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
imm rs2 rs1 funct3 imm opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 41 ©b



Branches in

Comparison of two registers and change program counter iff condition is met
• beq rs1, rs2, offset (if rs1==rs2 then pc+=offset)
• bne rs1, rs2, offset (if rs1!=rs2 then pc+=offset)
• blt rs1, rs2, offset (if rs1<rs2 then pc+=offset)
• bge rs1, rs2, offset (if rs1>=rs2 then pc+=offset)
• bltu and bgeu accordingly

”B” Instruction format
31 0

7 Bit 5 Bit 5 Bit 3 Bit 5 Bit 7 Bit
imm rs2 rs1 funct3 imm opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 41 ©b



Jumps in

Branches are generally limited in distance (±4kB), larger jumps as unconditional control
transfer instructions (±1MB)

Jump and Link

• jal rd, offset (rd=pc+4, pc=pc+offset)
• jalr rd, offset(rs1) (rd=pc+4, pc=rs1+offset)

Link : Store address of next instruction

• Makes information available at destination where jump came from
• Main use in function calls (return address), x0 as link register: simple ”jump”

”J” format for jal, (known) ”I” format for jalr
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 42 ©b



Jumps in
Branches are generally limited in distance (±4kB), larger jumps as unconditional control
transfer instructions (±1MB)

Jump and Link

• jal rd, offset (rd=pc+4, pc=pc+offset)
• jalr rd, offset(rs1) (rd=pc+4, pc=rs1+offset)

Link : Store address of next instruction

• Makes information available at destination where jump came from
• Main use in function calls (return address), x0 as link register: simple ”jump”

”J” format for jal, (known) ”I” format for jalr
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 42 ©b



Jumps in
Branches are generally limited in distance (±4kB), larger jumps as unconditional control
transfer instructions (±1MB)

Jump and Link

• jal rd, offset (rd=pc+4, pc=pc+offset)
• jalr rd, offset(rs1) (rd=pc+4, pc=rs1+offset)

Link : Store address of next instruction

• Makes information available at destination where jump came from
• Main use in function calls (return address), x0 as link register: simple ”jump”

”J” format for jal, (known) ”I” format for jalr
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 42 ©b



Jumps in
Branches are generally limited in distance (±4kB), larger jumps as unconditional control
transfer instructions (±1MB)

Jump and Link
• jal rd, offset (rd=pc+4, pc=pc+offset)

• jalr rd, offset(rs1) (rd=pc+4, pc=rs1+offset)

Link : Store address of next instruction

• Makes information available at destination where jump came from
• Main use in function calls (return address), x0 as link register: simple ”jump”

”J” format for jal, (known) ”I” format for jalr
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 42 ©b



Jumps in
Branches are generally limited in distance (±4kB), larger jumps as unconditional control
transfer instructions (±1MB)

Jump and Link
• jal rd, offset (rd=pc+4, pc=pc+offset)
• jalr rd, offset(rs1) (rd=pc+4, pc=rs1+offset)

Link : Store address of next instruction

• Makes information available at destination where jump came from
• Main use in function calls (return address), x0 as link register: simple ”jump”

”J” format for jal, (known) ”I” format for jalr
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 42 ©b



Jumps in
Branches are generally limited in distance (±4kB), larger jumps as unconditional control
transfer instructions (±1MB)

Jump and Link
• jal rd, offset (rd=pc+4, pc=pc+offset)
• jalr rd, offset(rs1) (rd=pc+4, pc=rs1+offset)

Link : Store address of next instruction

• Makes information available at destination where jump came from
• Main use in function calls (return address), x0 as link register: simple ”jump”

”J” format for jal, (known) ”I” format for jalr
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 42 ©b



Jumps in
Branches are generally limited in distance (±4kB), larger jumps as unconditional control
transfer instructions (±1MB)

Jump and Link
• jal rd, offset (rd=pc+4, pc=pc+offset)
• jalr rd, offset(rs1) (rd=pc+4, pc=rs1+offset)

Link : Store address of next instruction
• Makes information available at destination where jump came from

• Main use in function calls (return address), x0 as link register: simple ”jump”

”J” format for jal, (known) ”I” format for jalr
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 42 ©b



Jumps in
Branches are generally limited in distance (±4kB), larger jumps as unconditional control
transfer instructions (±1MB)

Jump and Link
• jal rd, offset (rd=pc+4, pc=pc+offset)
• jalr rd, offset(rs1) (rd=pc+4, pc=rs1+offset)

Link : Store address of next instruction
• Makes information available at destination where jump came from
• Main use in function calls (return address), x0 as link register: simple ”jump”

”J” format for jal, (known) ”I” format for jalr
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 42 ©b



Jumps in
Branches are generally limited in distance (±4kB), larger jumps as unconditional control
transfer instructions (±1MB)

Jump and Link
• jal rd, offset (rd=pc+4, pc=pc+offset)
• jalr rd, offset(rs1) (rd=pc+4, pc=rs1+offset)

Link : Store address of next instruction
• Makes information available at destination where jump came from
• Main use in function calls (return address), x0 as link register: simple ”jump”

”J” format for jal, (known) ”I” format for jalr
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 42 ©b



Large Constants and Addresses

Limitations of immediate operations and branches/jumps

• Only 12 bit immediate, how to set 32 bit?
• Only 20 bit jump offset, how to jump in large programs?

Immediate and offset sizes are limited by instruction size
usually: XLEN ≥ instruction size

ISAs provide operations for constant/address formation to solve the issue

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 43 ©b



Large Constants and Addresses

Limitations of immediate operations and branches/jumps

• Only 12 bit immediate, how to set 32 bit?
• Only 20 bit jump offset, how to jump in large programs?

Immediate and offset sizes are limited by instruction size
usually: XLEN ≥ instruction size

ISAs provide operations for constant/address formation to solve the issue

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 43 ©b



Large Constants and Addresses

Limitations of immediate operations and branches/jumps
• Only 12 bit immediate, how to set 32 bit?

• Only 20 bit jump offset, how to jump in large programs?

Immediate and offset sizes are limited by instruction size
usually: XLEN ≥ instruction size

ISAs provide operations for constant/address formation to solve the issue

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 43 ©b



Large Constants and Addresses

Limitations of immediate operations and branches/jumps
• Only 12 bit immediate, how to set 32 bit?
• Only 20 bit jump offset, how to jump in large programs?

Immediate and offset sizes are limited by instruction size
usually: XLEN ≥ instruction size

ISAs provide operations for constant/address formation to solve the issue

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 43 ©b



Large Constants and Addresses

Limitations of immediate operations and branches/jumps
• Only 12 bit immediate, how to set 32 bit?
• Only 20 bit jump offset, how to jump in large programs?

Immediate and offset sizes are limited by instruction size
usually: XLEN ≥ instruction size

ISAs provide operations for constant/address formation to solve the issue

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 43 ©b



Large Constants and Addresses

Limitations of immediate operations and branches/jumps
• Only 12 bit immediate, how to set 32 bit?
• Only 20 bit jump offset, how to jump in large programs?

Immediate and offset sizes are limited by instruction size
usually: XLEN ≥ instruction size

ISAs provide operations for constant/address formation to solve the issue

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 43 ©b



Large Constants in

Special ”upper” instructions: Load upper part of register

• lui rd, imm (load upper immediate, rd=imm,0)
• auipc rd, offset (add upper immediate to pc, pc=pc+offset,0)

Reduces the number of instructions needed to form constants/addresses

”U” format
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 44 ©b



Large Constants in

Special ”upper” instructions: Load upper part of register

• lui rd, imm (load upper immediate, rd=imm,0)
• auipc rd, offset (add upper immediate to pc, pc=pc+offset,0)

Reduces the number of instructions needed to form constants/addresses

”U” format
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 44 ©b



Large Constants in

Special ”upper” instructions: Load upper part of register
• lui rd, imm (load upper immediate, rd=imm,0)

• auipc rd, offset (add upper immediate to pc, pc=pc+offset,0)

Reduces the number of instructions needed to form constants/addresses

”U” format
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 44 ©b



Large Constants in

Special ”upper” instructions: Load upper part of register
• lui rd, imm (load upper immediate, rd=imm,0)
• auipc rd, offset (add upper immediate to pc, pc=pc+offset,0)

Reduces the number of instructions needed to form constants/addresses

”U” format
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 44 ©b



Large Constants in

Special ”upper” instructions: Load upper part of register
• lui rd, imm (load upper immediate, rd=imm,0)
• auipc rd, offset (add upper immediate to pc, pc=pc+offset,0)

Reduces the number of instructions needed to form constants/addresses

”U” format
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 44 ©b



Large Constants in

Special ”upper” instructions: Load upper part of register
• lui rd, imm (load upper immediate, rd=imm,0)
• auipc rd, offset (add upper immediate to pc, pc=pc+offset,0)

Reduces the number of instructions needed to form constants/addresses

”U” format
31 0

20 Bit 5 Bit 7 Bit
immediate rd opcode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 44 ©b



Summary of instruction formats

funct7 rs2 rs1 funct3 rd opcode R format

immediate rs1 funct3 rd opcode I format

immediate rs1 funct3 imm. opcode S format

immediate rs1 funct3 imm. opcode B format

immediate rd opcode U format

immediate rd opcode J format

Differences between I/S/B and U/J in arrangement of bits throughout immediates:
optimized to support hardware implementation

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 45 ©b



Summary of instruction formats

funct7 rs2 rs1 funct3 rd opcode R format

immediate rs1 funct3 rd opcode I format

immediate rs1 funct3 imm. opcode S format

immediate rs1 funct3 imm. opcode B format

immediate rd opcode U format

immediate rd opcode J format

Differences between I/S/B and U/J in arrangement of bits throughout immediates:
optimized to support hardware implementation

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 45 ©b



Instruction Anatomy in

Formats/instruction coding are optimized for hardware design

Example of a decoding

0011

opcode

0-4

1

0

opcode

6

1

0

opcode

4

1

0

1

0

opcode

5

000 add

001 sll

...

000 addi

001 sll

...

funct3

The opcode and function bits can be used to directly drive control lines (multiplexers, etc.)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 46 ©b



Instruction Anatomy in
Formats/instruction coding are optimized for hardware design

Example of a decoding

0011

opcode

0-4

1

0

opcode

6

1

0

opcode

4

1

0

1

0

opcode

5

000 add

001 sll

...

000 addi

001 sll

...

funct3

The opcode and function bits can be used to directly drive control lines (multiplexers, etc.)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 46 ©b



Instruction Anatomy in
Formats/instruction coding are optimized for hardware design

Example of a decoding

0011

opcode

0-4

1

0

opcode

6

1

0

opcode

4

1

0

1

0

opcode

5

000 add

001 sll

...

000 addi

001 sll

...

funct3

The opcode and function bits can be used to directly drive control lines (multiplexers, etc.)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 46 ©b



Instruction Anatomy in
Formats/instruction coding are optimized for hardware design

Example of a decoding

0011

opcode

0-4

1

0

opcode

6

1

0

opcode

4

1

0

1

0

opcode

5

000 add

001 sll

...

000 addi

001 sll

...

funct3

The opcode and function bits can be used to directly drive control lines (multiplexers, etc.)
Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 46 ©b



APPLICATION BINARY
INTERFACE
Example:

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 47 ©b



Application Binary Interface

ABI defines interoperability of binary programs: operating system, library, etc.

• Size and alignment of data types
• Calling conventions define how programs call functions in other binary programs
• System calls to the operating system

Calling conventions and the stack are generally defined for software
Required so that compiler can generate programs, standardized for interoperability

ABI adds semantics to instructions that is reflected in register ”ABI names”
Examples in RISC-V: a0 for x10 as argument register, t0 for x5 as temporary, zero for x0,
see chapter 25 in ISA spec

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 48 ©b



Application Binary Interface

ABI defines interoperability of binary programs: operating system, library, etc.

• Size and alignment of data types
• Calling conventions define how programs call functions in other binary programs
• System calls to the operating system

Calling conventions and the stack are generally defined for software
Required so that compiler can generate programs, standardized for interoperability

ABI adds semantics to instructions that is reflected in register ”ABI names”
Examples in RISC-V: a0 for x10 as argument register, t0 for x5 as temporary, zero for x0,
see chapter 25 in ISA spec

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 48 ©b



Application Binary Interface

ABI defines interoperability of binary programs: operating system, library, etc.
• Size and alignment of data types

• Calling conventions define how programs call functions in other binary programs
• System calls to the operating system

Calling conventions and the stack are generally defined for software
Required so that compiler can generate programs, standardized for interoperability

ABI adds semantics to instructions that is reflected in register ”ABI names”
Examples in RISC-V: a0 for x10 as argument register, t0 for x5 as temporary, zero for x0,
see chapter 25 in ISA spec

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 48 ©b



Application Binary Interface

ABI defines interoperability of binary programs: operating system, library, etc.
• Size and alignment of data types
• Calling conventions define how programs call functions in other binary programs

• System calls to the operating system

Calling conventions and the stack are generally defined for software
Required so that compiler can generate programs, standardized for interoperability

ABI adds semantics to instructions that is reflected in register ”ABI names”
Examples in RISC-V: a0 for x10 as argument register, t0 for x5 as temporary, zero for x0,
see chapter 25 in ISA spec

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 48 ©b



Application Binary Interface

ABI defines interoperability of binary programs: operating system, library, etc.
• Size and alignment of data types
• Calling conventions define how programs call functions in other binary programs
• System calls to the operating system

Calling conventions and the stack are generally defined for software
Required so that compiler can generate programs, standardized for interoperability

ABI adds semantics to instructions that is reflected in register ”ABI names”
Examples in RISC-V: a0 for x10 as argument register, t0 for x5 as temporary, zero for x0,
see chapter 25 in ISA spec

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 48 ©b



Application Binary Interface

ABI defines interoperability of binary programs: operating system, library, etc.
• Size and alignment of data types
• Calling conventions define how programs call functions in other binary programs
• System calls to the operating system

Calling conventions and the stack are generally defined for software
Required so that compiler can generate programs, standardized for interoperability

ABI adds semantics to instructions that is reflected in register ”ABI names”
Examples in RISC-V: a0 for x10 as argument register, t0 for x5 as temporary, zero for x0,
see chapter 25 in ISA spec

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 48 ©b



Application Binary Interface

ABI defines interoperability of binary programs: operating system, library, etc.
• Size and alignment of data types
• Calling conventions define how programs call functions in other binary programs
• System calls to the operating system

Calling conventions and the stack are generally defined for software
Required so that compiler can generate programs, standardized for interoperability

ABI adds semantics to instructions that is reflected in register ”ABI names”
Examples in RISC-V: a0 for x10 as argument register, t0 for x5 as temporary, zero for x0,
see chapter 25 in ISA spec

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 48 ©b



Stack Frame

M
em

or
y
(i
nc
re
as
in
g
ad
dr
es
s

ú
)

frame

pointer

stack

pointer

Before
function call

saved arguments

return address

saved registers

local data

frame

pointer

stack

pointer

During
function call

frame

pointer

stack

pointer

After func-
tion call

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 49 ©b



Calling Conventions

Specified per ISA

Defines the flow of function calls

• In which registers arguments are stored (RISC-V: a0-a7)
• How extra arguments are given (RISC-V: stack pointer points to next argument)
• In which registers results are returned (RISC-V: a0-a1)
• Which register contains the return address (RISC-V: ra)
• Which registers are saved by the caller or the callee (RISC-V: see next)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 50 ©b



Calling Conventions

Specified per ISA

Defines the flow of function calls

• In which registers arguments are stored (RISC-V: a0-a7)
• How extra arguments are given (RISC-V: stack pointer points to next argument)
• In which registers results are returned (RISC-V: a0-a1)
• Which register contains the return address (RISC-V: ra)
• Which registers are saved by the caller or the callee (RISC-V: see next)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 50 ©b



Calling Conventions

Specified per ISA

Defines the flow of function calls

• In which registers arguments are stored (RISC-V: a0-a7)
• How extra arguments are given (RISC-V: stack pointer points to next argument)
• In which registers results are returned (RISC-V: a0-a1)
• Which register contains the return address (RISC-V: ra)
• Which registers are saved by the caller or the callee (RISC-V: see next)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 50 ©b



Calling Conventions

Specified per ISA

Defines the flow of function calls
• In which registers arguments are stored (RISC-V: a0-a7)

• How extra arguments are given (RISC-V: stack pointer points to next argument)
• In which registers results are returned (RISC-V: a0-a1)
• Which register contains the return address (RISC-V: ra)
• Which registers are saved by the caller or the callee (RISC-V: see next)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 50 ©b



Calling Conventions

Specified per ISA

Defines the flow of function calls
• In which registers arguments are stored (RISC-V: a0-a7)
• How extra arguments are given (RISC-V: stack pointer points to next argument)

• In which registers results are returned (RISC-V: a0-a1)
• Which register contains the return address (RISC-V: ra)
• Which registers are saved by the caller or the callee (RISC-V: see next)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 50 ©b



Calling Conventions

Specified per ISA

Defines the flow of function calls
• In which registers arguments are stored (RISC-V: a0-a7)
• How extra arguments are given (RISC-V: stack pointer points to next argument)
• In which registers results are returned (RISC-V: a0-a1)

• Which register contains the return address (RISC-V: ra)
• Which registers are saved by the caller or the callee (RISC-V: see next)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 50 ©b



Calling Conventions

Specified per ISA

Defines the flow of function calls
• In which registers arguments are stored (RISC-V: a0-a7)
• How extra arguments are given (RISC-V: stack pointer points to next argument)
• In which registers results are returned (RISC-V: a0-a1)
• Which register contains the return address (RISC-V: ra)

• Which registers are saved by the caller or the callee (RISC-V: see next)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 50 ©b



Calling Conventions

Specified per ISA

Defines the flow of function calls
• In which registers arguments are stored (RISC-V: a0-a7)
• How extra arguments are given (RISC-V: stack pointer points to next argument)
• In which registers results are returned (RISC-V: a0-a1)
• Which register contains the return address (RISC-V: ra)
• Which registers are saved by the caller or the callee (RISC-V: see next)

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 50 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)

• Callee-saved
Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)

• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)

• Callee-saved
Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)

• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)

• Callee-saved
Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)

• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)
• Callee-saved

Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)

• Caller-saved
Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)

• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)
• Callee-saved

Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)

• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)
• Callee-saved

Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)

• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)
• Callee-saved

Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)
• Caller saves caller saved registers on the stack

• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)
• Callee-saved

Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)
• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)

• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)
• Callee-saved

Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)
• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed

• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)
• Callee-saved

Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)
• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..

• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Calling Convention in

Register values must be preserved during function calls

Define which saved by calling function (caller) and called function (callee)
• Callee-saved

Stack pointer (sp/x2), ”saved registers” (s0-s11/x8,x9,x18-x27)
• Caller-saved

Return address (ra/x1), arguments (a0-a7/x10-x17), ”temporary registers”
(t0-t6/x5-x7,x28-x31)

Function call (generic, differs for leaf functions and can be optimized)
• Caller saves caller saved registers on the stack
• Caller calls function with jal(r)
• Callee saves stack pointer on stack reserves space on stack, saves callee saved if needed
• Callee function..
• Callee restores return address and executes jalr with it as target

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 51 ©b



Other Things

Assembler mnemonic pseudoinstructions (aliases)

• Defined by the instruction manual (Chapter 25)
• Expand to other assembler instruction or sequence of instructions
• Examples: no operation nop, load immediate li rd, imm, move mv rd, rs

Some assembler programs (e.g., GNU AS in our lab) provide convenient use
For example: generic add x2, x1, -2 as alias for addi

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 52 ©b



Other Things

Assembler mnemonic pseudoinstructions (aliases)

• Defined by the instruction manual (Chapter 25)
• Expand to other assembler instruction or sequence of instructions
• Examples: no operation nop, load immediate li rd, imm, move mv rd, rs

Some assembler programs (e.g., GNU AS in our lab) provide convenient use
For example: generic add x2, x1, -2 as alias for addi

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 52 ©b



Other Things

Assembler mnemonic pseudoinstructions (aliases)
• Defined by the instruction manual (Chapter 25)

• Expand to other assembler instruction or sequence of instructions
• Examples: no operation nop, load immediate li rd, imm, move mv rd, rs

Some assembler programs (e.g., GNU AS in our lab) provide convenient use
For example: generic add x2, x1, -2 as alias for addi

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 52 ©b



Other Things

Assembler mnemonic pseudoinstructions (aliases)
• Defined by the instruction manual (Chapter 25)
• Expand to other assembler instruction or sequence of instructions

• Examples: no operation nop, load immediate li rd, imm, move mv rd, rs

Some assembler programs (e.g., GNU AS in our lab) provide convenient use
For example: generic add x2, x1, -2 as alias for addi

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 52 ©b



Other Things

Assembler mnemonic pseudoinstructions (aliases)
• Defined by the instruction manual (Chapter 25)
• Expand to other assembler instruction or sequence of instructions
• Examples: no operation nop, load immediate li rd, imm, move mv rd, rs

Some assembler programs (e.g., GNU AS in our lab) provide convenient use
For example: generic add x2, x1, -2 as alias for addi

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 52 ©b



Other Things

Assembler mnemonic pseudoinstructions (aliases)
• Defined by the instruction manual (Chapter 25)
• Expand to other assembler instruction or sequence of instructions
• Examples: no operation nop, load immediate li rd, imm, move mv rd, rs

Some assembler programs (e.g., GNU AS in our lab) provide convenient use
For example: generic add x2, x1, -2 as alias for addi

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 52 ©b



PRIVILEGE LEVELS AND
EXCEPTIONS
Example:

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 53 ©b



Interaction with environment

Programs commonly run in an environment, for example:

• Baremetal environment: Direct access to hardware
• Operating system environment: Access abstracted and multiplexed by operating

system or runtime system
• Virtualization environment: Computer shared by multiple operating systems

Basic abstraction principle:

• Execution environments abstract from underlying hardware
• Potentially protects from malicious code controlling the system with privileges

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 54 ©b



Interaction with environment

Programs commonly run in an environment, for example:

• Baremetal environment: Direct access to hardware
• Operating system environment: Access abstracted and multiplexed by operating

system or runtime system
• Virtualization environment: Computer shared by multiple operating systems

Basic abstraction principle:

• Execution environments abstract from underlying hardware
• Potentially protects from malicious code controlling the system with privileges

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 54 ©b



Interaction with environment

Programs commonly run in an environment, for example:
• Baremetal environment: Direct access to hardware

• Operating system environment: Access abstracted and multiplexed by operating
system or runtime system
• Virtualization environment: Computer shared by multiple operating systems

Basic abstraction principle:

• Execution environments abstract from underlying hardware
• Potentially protects from malicious code controlling the system with privileges

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 54 ©b



Interaction with environment

Programs commonly run in an environment, for example:
• Baremetal environment: Direct access to hardware
• Operating system environment: Access abstracted and multiplexed by operating

system or runtime system

• Virtualization environment: Computer shared by multiple operating systems

Basic abstraction principle:

• Execution environments abstract from underlying hardware
• Potentially protects from malicious code controlling the system with privileges

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 54 ©b



Interaction with environment

Programs commonly run in an environment, for example:
• Baremetal environment: Direct access to hardware
• Operating system environment: Access abstracted and multiplexed by operating

system or runtime system
• Virtualization environment: Computer shared by multiple operating systems

Basic abstraction principle:

• Execution environments abstract from underlying hardware
• Potentially protects from malicious code controlling the system with privileges

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 54 ©b



Interaction with environment

Programs commonly run in an environment, for example:
• Baremetal environment: Direct access to hardware
• Operating system environment: Access abstracted and multiplexed by operating

system or runtime system
• Virtualization environment: Computer shared by multiple operating systems

Basic abstraction principle:

• Execution environments abstract from underlying hardware
• Potentially protects from malicious code controlling the system with privileges

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 54 ©b



Interaction with environment

Programs commonly run in an environment, for example:
• Baremetal environment: Direct access to hardware
• Operating system environment: Access abstracted and multiplexed by operating

system or runtime system
• Virtualization environment: Computer shared by multiple operating systems

Basic abstraction principle:
• Execution environments abstract from underlying hardware

• Potentially protects from malicious code controlling the system with privileges

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 54 ©b



Interaction with environment

Programs commonly run in an environment, for example:
• Baremetal environment: Direct access to hardware
• Operating system environment: Access abstracted and multiplexed by operating

system or runtime system
• Virtualization environment: Computer shared by multiple operating systems

Basic abstraction principle:
• Execution environments abstract from underlying hardware
• Potentially protects from malicious code controlling the system with privileges

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 54 ©b



Application Execution Environment

Applications usually have an underlying execution environment

Most fundamental is application execution environment

• Provides system functions (such as I/O)
• No actual operating system, but basic abstraction

Recap: ABI

• Interoperability between software pieces of application
• Access to system functions via system calls

Very common AEE (also in our lab): simulators

Application

ABI

Application Execution

Environment

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 55 ©b



Application Execution Environment

Applications usually have an underlying execution environment

Most fundamental is application execution environment

• Provides system functions (such as I/O)
• No actual operating system, but basic abstraction

Recap: ABI

• Interoperability between software pieces of application
• Access to system functions via system calls

Very common AEE (also in our lab): simulators

Application

ABI

Application Execution

Environment

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 55 ©b



Application Execution Environment

Applications usually have an underlying execution environment

Most fundamental is application execution environment

• Provides system functions (such as I/O)
• No actual operating system, but basic abstraction

Recap: ABI

• Interoperability between software pieces of application
• Access to system functions via system calls

Very common AEE (also in our lab): simulators

Application

ABI

Application Execution

Environment

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 55 ©b



Application Execution Environment

Applications usually have an underlying execution environment

Most fundamental is application execution environment
• Provides system functions (such as I/O)

• No actual operating system, but basic abstraction

Recap: ABI

• Interoperability between software pieces of application
• Access to system functions via system calls

Very common AEE (also in our lab): simulators

Application

ABI

Application Execution

Environment

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 55 ©b



Application Execution Environment

Applications usually have an underlying execution environment

Most fundamental is application execution environment
• Provides system functions (such as I/O)
• No actual operating system, but basic abstraction

Recap: ABI

• Interoperability between software pieces of application
• Access to system functions via system calls

Very common AEE (also in our lab): simulators

Application

ABI

Application Execution

Environment

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 55 ©b



Application Execution Environment

Applications usually have an underlying execution environment

Most fundamental is application execution environment
• Provides system functions (such as I/O)
• No actual operating system, but basic abstraction

Recap: ABI

• Interoperability between software pieces of application
• Access to system functions via system calls

Very common AEE (also in our lab): simulators

Application

ABI

Application Execution

Environment

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 55 ©b



Application Execution Environment

Applications usually have an underlying execution environment

Most fundamental is application execution environment
• Provides system functions (such as I/O)
• No actual operating system, but basic abstraction

Recap: ABI
• Interoperability between software pieces of application

• Access to system functions via system calls

Very common AEE (also in our lab): simulators

Application

ABI

Application Execution

Environment

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 55 ©b



Application Execution Environment

Applications usually have an underlying execution environment

Most fundamental is application execution environment
• Provides system functions (such as I/O)
• No actual operating system, but basic abstraction

Recap: ABI
• Interoperability between software pieces of application
• Access to system functions via system calls

Very common AEE (also in our lab): simulators

Application

ABI

Application Execution

Environment

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 55 ©b



Application Execution Environment

Applications usually have an underlying execution environment

Most fundamental is application execution environment
• Provides system functions (such as I/O)
• No actual operating system, but basic abstraction

Recap: ABI
• Interoperability between software pieces of application
• Access to system functions via system calls

Very common AEE (also in our lab): simulators

Application

ABI

Application Execution

Environment

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 55 ©b



Supervisor Privileges

Extend AEE with multitasking

• Provide each application the impression it is running alone
• Strong separation properties
• Fundamental functionality of an operating system

Differentiation between application and supervisor privileges

RISC-V: Supervisor execution environment (SEE)

• Provides abstraction from hardware platform (portability)
via Supervisor Binary Interface
• Basic SEEs: BIOS-style IO system, boot loader

Application Application

ABI ABI

Operating System

SBI

SEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 56 ©b



Supervisor Privileges

Extend AEE with multitasking

• Provide each application the impression it is running alone
• Strong separation properties
• Fundamental functionality of an operating system

Differentiation between application and supervisor privileges

RISC-V: Supervisor execution environment (SEE)

• Provides abstraction from hardware platform (portability)
via Supervisor Binary Interface
• Basic SEEs: BIOS-style IO system, boot loader

Application Application

ABI ABI

Operating System

SBI

SEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 56 ©b



Supervisor Privileges

Extend AEE with multitasking
• Provide each application the impression it is running alone

• Strong separation properties
• Fundamental functionality of an operating system

Differentiation between application and supervisor privileges

RISC-V: Supervisor execution environment (SEE)

• Provides abstraction from hardware platform (portability)
via Supervisor Binary Interface
• Basic SEEs: BIOS-style IO system, boot loader

Application Application

ABI ABI

Operating System

SBI

SEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 56 ©b



Supervisor Privileges

Extend AEE with multitasking
• Provide each application the impression it is running alone
• Strong separation properties

• Fundamental functionality of an operating system

Differentiation between application and supervisor privileges

RISC-V: Supervisor execution environment (SEE)

• Provides abstraction from hardware platform (portability)
via Supervisor Binary Interface
• Basic SEEs: BIOS-style IO system, boot loader

Application Application

ABI ABI

Operating System

SBI

SEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 56 ©b



Supervisor Privileges

Extend AEE with multitasking
• Provide each application the impression it is running alone
• Strong separation properties
• Fundamental functionality of an operating system

Differentiation between application and supervisor privileges

RISC-V: Supervisor execution environment (SEE)

• Provides abstraction from hardware platform (portability)
via Supervisor Binary Interface
• Basic SEEs: BIOS-style IO system, boot loader

Application Application

ABI ABI

Operating System

SBI

SEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 56 ©b



Supervisor Privileges

Extend AEE with multitasking
• Provide each application the impression it is running alone
• Strong separation properties
• Fundamental functionality of an operating system

Differentiation between application and supervisor privileges

RISC-V: Supervisor execution environment (SEE)

• Provides abstraction from hardware platform (portability)
via Supervisor Binary Interface
• Basic SEEs: BIOS-style IO system, boot loader

Application Application

ABI ABI

Operating System

SBI

SEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 56 ©b



Supervisor Privileges

Extend AEE with multitasking
• Provide each application the impression it is running alone
• Strong separation properties
• Fundamental functionality of an operating system

Differentiation between application and supervisor privileges

RISC-V: Supervisor execution environment (SEE)

• Provides abstraction from hardware platform (portability)
via Supervisor Binary Interface
• Basic SEEs: BIOS-style IO system, boot loader

Application Application

ABI ABI

Operating System

SBI

SEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 56 ©b



Supervisor Privileges

Extend AEE with multitasking
• Provide each application the impression it is running alone
• Strong separation properties
• Fundamental functionality of an operating system

Differentiation between application and supervisor privileges

RISC-V: Supervisor execution environment (SEE)
• Provides abstraction from hardware platform (portability)

via Supervisor Binary Interface

• Basic SEEs: BIOS-style IO system, boot loader

Application Application

ABI ABI

Operating System

SBI

SEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 56 ©b



Supervisor Privileges

Extend AEE with multitasking
• Provide each application the impression it is running alone
• Strong separation properties
• Fundamental functionality of an operating system

Differentiation between application and supervisor privileges

RISC-V: Supervisor execution environment (SEE)
• Provides abstraction from hardware platform (portability)

via Supervisor Binary Interface
• Basic SEEs: BIOS-style IO system, boot loader

Application Application

ABI ABI

Operating System

SBI

SEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 56 ©b



Hypervisor Privileges

Hypervisor : SEE multiplexes between multiple
operating systems

• Relevant system functions accessed via SBI
• Full system virtualization

Differentiation between application, supervisor and
hypervisor privileges

RISC-V: Hypervisor execution environment (HEE)

• Portability by Hypervisor Binary Interface (HBI)

Appl. Appl. Appl. Appl.

ABI ABI ABI ABI

Operating System Operating System

SBI SBI

Hypervisor

HBI

HEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 57 ©b



Hypervisor Privileges

Hypervisor : SEE multiplexes between multiple
operating systems

• Relevant system functions accessed via SBI
• Full system virtualization

Differentiation between application, supervisor and
hypervisor privileges

RISC-V: Hypervisor execution environment (HEE)

• Portability by Hypervisor Binary Interface (HBI)

Appl. Appl. Appl. Appl.

ABI ABI ABI ABI

Operating System Operating System

SBI SBI

Hypervisor

HBI

HEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 57 ©b



Hypervisor Privileges

Hypervisor : SEE multiplexes between multiple
operating systems
• Relevant system functions accessed via SBI

• Full system virtualization

Differentiation between application, supervisor and
hypervisor privileges

RISC-V: Hypervisor execution environment (HEE)

• Portability by Hypervisor Binary Interface (HBI)

Appl. Appl. Appl. Appl.

ABI ABI ABI ABI

Operating System Operating System

SBI SBI

Hypervisor

HBI

HEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 57 ©b



Hypervisor Privileges

Hypervisor : SEE multiplexes between multiple
operating systems
• Relevant system functions accessed via SBI
• Full system virtualization

Differentiation between application, supervisor and
hypervisor privileges

RISC-V: Hypervisor execution environment (HEE)

• Portability by Hypervisor Binary Interface (HBI)

Appl. Appl. Appl. Appl.

ABI ABI ABI ABI

Operating System Operating System

SBI SBI

Hypervisor

HBI

HEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 57 ©b



Hypervisor Privileges

Hypervisor : SEE multiplexes between multiple
operating systems
• Relevant system functions accessed via SBI
• Full system virtualization

Differentiation between application, supervisor and
hypervisor privileges

RISC-V: Hypervisor execution environment (HEE)

• Portability by Hypervisor Binary Interface (HBI)

Appl. Appl. Appl. Appl.

ABI ABI ABI ABI

Operating System Operating System

SBI SBI

Hypervisor

HBI

HEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 57 ©b



Hypervisor Privileges

Hypervisor : SEE multiplexes between multiple
operating systems
• Relevant system functions accessed via SBI
• Full system virtualization

Differentiation between application, supervisor and
hypervisor privileges

RISC-V: Hypervisor execution environment (HEE)

• Portability by Hypervisor Binary Interface (HBI)

Appl. Appl. Appl. Appl.

ABI ABI ABI ABI

Operating System Operating System

SBI SBI

Hypervisor

HBI

HEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 57 ©b



Hypervisor Privileges

Hypervisor : SEE multiplexes between multiple
operating systems
• Relevant system functions accessed via SBI
• Full system virtualization

Differentiation between application, supervisor and
hypervisor privileges

RISC-V: Hypervisor execution environment (HEE)
• Portability by Hypervisor Binary Interface (HBI)

Appl. Appl. Appl. Appl.

ABI ABI ABI ABI

Operating System Operating System

SBI SBI

Hypervisor

HBI

HEE

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 57 ©b



Privilege Levels

Privileges of application and different execution environment managed by *privilege levels

Differences:

• Control and Status Registers (CSRs) depend on privilege level
• Access to hardware resources managed by privilege levels

Privilege levels are encoded in the CPU mode (RISC-V: U-mode, S-mode, M-mode)

Switch between privilege levels have to be explicit, example RISC-V:

• ecall leaves current mode and traps to next lower mode
• return from trap in each mode with mret, sret, uret

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 58 ©b



Privilege Levels

Privileges of application and different execution environment managed by *privilege levels

Differences:

• Control and Status Registers (CSRs) depend on privilege level
• Access to hardware resources managed by privilege levels

Privilege levels are encoded in the CPU mode (RISC-V: U-mode, S-mode, M-mode)

Switch between privilege levels have to be explicit, example RISC-V:

• ecall leaves current mode and traps to next lower mode
• return from trap in each mode with mret, sret, uret

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 58 ©b



Privilege Levels

Privileges of application and different execution environment managed by *privilege levels

Differences:

• Control and Status Registers (CSRs) depend on privilege level
• Access to hardware resources managed by privilege levels

Privilege levels are encoded in the CPU mode (RISC-V: U-mode, S-mode, M-mode)

Switch between privilege levels have to be explicit, example RISC-V:

• ecall leaves current mode and traps to next lower mode
• return from trap in each mode with mret, sret, uret

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 58 ©b



Privilege Levels

Privileges of application and different execution environment managed by *privilege levels

Differences:
• Control and Status Registers (CSRs) depend on privilege level

• Access to hardware resources managed by privilege levels

Privilege levels are encoded in the CPU mode (RISC-V: U-mode, S-mode, M-mode)

Switch between privilege levels have to be explicit, example RISC-V:

• ecall leaves current mode and traps to next lower mode
• return from trap in each mode with mret, sret, uret

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 58 ©b



Privilege Levels

Privileges of application and different execution environment managed by *privilege levels

Differences:
• Control and Status Registers (CSRs) depend on privilege level
• Access to hardware resources managed by privilege levels

Privilege levels are encoded in the CPU mode (RISC-V: U-mode, S-mode, M-mode)

Switch between privilege levels have to be explicit, example RISC-V:

• ecall leaves current mode and traps to next lower mode
• return from trap in each mode with mret, sret, uret

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 58 ©b



Privilege Levels

Privileges of application and different execution environment managed by *privilege levels

Differences:
• Control and Status Registers (CSRs) depend on privilege level
• Access to hardware resources managed by privilege levels

Privilege levels are encoded in the CPU mode (RISC-V: U-mode, S-mode, M-mode)

Switch between privilege levels have to be explicit, example RISC-V:

• ecall leaves current mode and traps to next lower mode
• return from trap in each mode with mret, sret, uret

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 58 ©b



Privilege Levels

Privileges of application and different execution environment managed by *privilege levels

Differences:
• Control and Status Registers (CSRs) depend on privilege level
• Access to hardware resources managed by privilege levels

Privilege levels are encoded in the CPU mode (RISC-V: U-mode, S-mode, M-mode)

Switch between privilege levels have to be explicit, example RISC-V:

• ecall leaves current mode and traps to next lower mode
• return from trap in each mode with mret, sret, uret

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 58 ©b



Privilege Levels

Privileges of application and different execution environment managed by *privilege levels

Differences:
• Control and Status Registers (CSRs) depend on privilege level
• Access to hardware resources managed by privilege levels

Privilege levels are encoded in the CPU mode (RISC-V: U-mode, S-mode, M-mode)

Switch between privilege levels have to be explicit, example RISC-V:
• ecall leaves current mode and traps to next lower mode

• return from trap in each mode with mret, sret, uret

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 58 ©b



Privilege Levels

Privileges of application and different execution environment managed by *privilege levels

Differences:
• Control and Status Registers (CSRs) depend on privilege level
• Access to hardware resources managed by privilege levels

Privilege levels are encoded in the CPU mode (RISC-V: U-mode, S-mode, M-mode)

Switch between privilege levels have to be explicit, example RISC-V:
• ecall leaves current mode and traps to next lower mode
• return from trap in each mode with mret, sret, uret

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 58 ©b



Exceptions

Exceptions: ”Disturbance” in instruction stream by an event

• Synchronous exceptions: exceptions that relate to an instruction (divide by zero, page
fault, etc.)
• Asynchronous exceptions/interrupts: external events (such as I/O)

Performance improvement: delegation

• Let ”higher” modes handle exceptions
• Delegation reduces overhead of switching, typical example: Let guest OS in

virtualization directly handle page fault and not fault to machine mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 59 ©b



Exceptions

Exceptions: ”Disturbance” in instruction stream by an event

• Synchronous exceptions: exceptions that relate to an instruction (divide by zero, page
fault, etc.)
• Asynchronous exceptions/interrupts: external events (such as I/O)

Performance improvement: delegation

• Let ”higher” modes handle exceptions
• Delegation reduces overhead of switching, typical example: Let guest OS in

virtualization directly handle page fault and not fault to machine mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 59 ©b



Exceptions

Exceptions: ”Disturbance” in instruction stream by an event
• Synchronous exceptions: exceptions that relate to an instruction (divide by zero, page

fault, etc.)

• Asynchronous exceptions/interrupts: external events (such as I/O)

Performance improvement: delegation

• Let ”higher” modes handle exceptions
• Delegation reduces overhead of switching, typical example: Let guest OS in

virtualization directly handle page fault and not fault to machine mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 59 ©b



Exceptions

Exceptions: ”Disturbance” in instruction stream by an event
• Synchronous exceptions: exceptions that relate to an instruction (divide by zero, page

fault, etc.)
• Asynchronous exceptions/interrupts: external events (such as I/O)

Performance improvement: delegation

• Let ”higher” modes handle exceptions
• Delegation reduces overhead of switching, typical example: Let guest OS in

virtualization directly handle page fault and not fault to machine mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 59 ©b



Exceptions

Exceptions: ”Disturbance” in instruction stream by an event
• Synchronous exceptions: exceptions that relate to an instruction (divide by zero, page

fault, etc.)
• Asynchronous exceptions/interrupts: external events (such as I/O)

Performance improvement: delegation

• Let ”higher” modes handle exceptions
• Delegation reduces overhead of switching, typical example: Let guest OS in

virtualization directly handle page fault and not fault to machine mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 59 ©b



Exceptions

Exceptions: ”Disturbance” in instruction stream by an event
• Synchronous exceptions: exceptions that relate to an instruction (divide by zero, page

fault, etc.)
• Asynchronous exceptions/interrupts: external events (such as I/O)

Performance improvement: delegation
• Let ”higher” modes handle exceptions

• Delegation reduces overhead of switching, typical example: Let guest OS in
virtualization directly handle page fault and not fault to machine mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 59 ©b



Exceptions

Exceptions: ”Disturbance” in instruction stream by an event
• Synchronous exceptions: exceptions that relate to an instruction (divide by zero, page

fault, etc.)
• Asynchronous exceptions/interrupts: external events (such as I/O)

Performance improvement: delegation
• Let ”higher” modes handle exceptions
• Delegation reduces overhead of switching, typical example: Let guest OS in

virtualization directly handle page fault and not fault to machine mode

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 59 ©b



Summary

Key takeaways

• Generic model of a processor
• Difference between ISA and Microarchitecture
• RISC vs. CISC
• Basic instruction set architecture, example RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 60 ©b



Summary

Key takeaways

• Generic model of a processor
• Difference between ISA and Microarchitecture
• RISC vs. CISC
• Basic instruction set architecture, example RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 60 ©b



Summary

Key takeaways
• Generic model of a processor

• Difference between ISA and Microarchitecture
• RISC vs. CISC
• Basic instruction set architecture, example RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 60 ©b



Summary

Key takeaways
• Generic model of a processor
• Difference between ISA and Microarchitecture

• RISC vs. CISC
• Basic instruction set architecture, example RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 60 ©b



Summary

Key takeaways
• Generic model of a processor
• Difference between ISA and Microarchitecture
• RISC vs. CISC

• Basic instruction set architecture, example RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 60 ©b



Summary

Key takeaways
• Generic model of a processor
• Difference between ISA and Microarchitecture
• RISC vs. CISC
• Basic instruction set architecture, example RISC-V

Computer Architecture – Chapter 2 – CPU Basics

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 60 ©b


