
COMPUTER ARCHITECTURE

Chapter 3 – CPU Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz

Department 07 – Munich University of Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License. ©b



Course Organization

[I
n
te
l
D
E
,
C
C

B
Y
-S
A

2
.0
]

Central Processing

Unit (CPU)

Basics

Pipelining

Optimizations

Caches

[W
a
ll
p
a
p
er
S
a
fa
ri
,

P
u
b
li
c
D
o
m
a
in
]

North
Bridge

FSB

[Martyx, CC BY-SA 3.0]

DDR

Main Memory

[r
w
in
d
r,

P
ix
a
b
ay
]

PCIe

GPU

South
Bridge

[M
ic
h
a
el
O
p
d
en

a
ck
er
,

C
C

B
Y
-S
A

4
.0
] SATA

Peripherals

[G
eo
rg
e
H
o
d
a
n
,
C
C
0
]

USB

Computer Architecture – Chapter 3 – CPU Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 2 ©b



Recap: Instruction Processing

Fetch instruction (short: FE)
• Pointer to next instruction from

current program counter
• Load the instruction from memory

Decode instruction (DE)
• Get operands from register file
• Extend sign if needed

Execute (EX)
• ALU-Operation from instruction
• Calculate effective address
• Control flow: check condition

clk
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Recap: Instruction Processing

Memory Access (MA)
• Reading or writing to memory
• optional

Write Back (WB)
• Write result into destination register
• Commit new program counter
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Hardware Implementation (simplified)

PC

+
4

instruction
memory

rs1, rs2

imm

opcode

data
memory
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Serial Execution

slli x1, x2, 4

lh x4, 8(x1)

beq x4, x0, END

t

FE DE EX WB

FE DE EX MA WB

FE DE EX MA WB

Can this be executed more efficiently?
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Inspiration: Assembly Line

(c) BlueSpringsFordParts, CC BY 2.0
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Instruction Pipelining

Overlapping execution of instructions
• Start phase for next instruction once current completes phase
• Parallelization of execution: Multiple concurrent instructions

Pipeline stages are synchronized, handover at same time

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Slowest stage determines clock frequency

Key technology for fast CPU implementations
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Hardware Implementation (simplified)
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pipeline stages?
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Hardware Implementation (simplified)

PC

+
4

instruction
memory

DEIF

rs1, rs2

imm

opcode

EX

data
memory

MA WB

Where are the
pipeline stages?
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Pipeline Speedup

slli x1, x2, 4

lh x4, 8(x1)

beq x4, x0, END

t

FE DE EX WB

FE DE EX MA WB

FE DE EX MA WB

MADE EX WB

DE EX MA WB

DE EX MA WB
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Structural Hazards

Problem: Instruction may need multiple cycles to complete stage

Next instruction is blocked úThe IPC decreases

Example: Memory access that needs multiple cycles to complete (see lecture ”memory”)

lh x4, 8(x1)

addi x2, x2, 4

FE DE EX MA MA WB

FE DE EX EX MA WB

Structural hazards can generally not be avoided!
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Pipeline Hazards

In general, pipeline hazards are situations that block an instructions from entering the next
pipeline stage
• Structural hazards are resource conflicts due to hardware availability
• Data hazards occur when a result of a previous command is not available
• Control hazards are a result of changes in the control flow

Hazards lead to a pipeline stall úIPC decreases
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Data Hazards

Problem: Conflict of operands between instructions

Example: Need result of previous instruction
• Result written in Writeback stage úExecution blocks until result becomes visible

xor x10, x1, x2

slli x11, x10, 2

add x3, x7, x8

sll x9, x7, x10

FE DE EX MA WB

FE DE DE DE EX MA WB

FE FE FE DE EX MA

FE DE EX

How can we avoid the problem?
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Instruction Level Parallelism

Instruction stream is sequentially stored in memory

But:
• Can we reorder instructions?
• Can instructions be executed in parallel?

Foundation of a large number of optimizations in computer architecture

xor x10, x1, x2

slli x11, x10, 2

add x3, x7, x8

sll x9, x7, x10

0

1

2

3

Why not execute in any order?
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Reorder instructions

Reorder instruction so that the data hazard is resolved

xor x10, x1, x2 0

add x3, x7, x8 2

slli x11, x10, 2 1

sll x9, x7, x10 3

FE DE EX MA WB

FE DE EX MA WB

FE DE DE EX MA WB

FE FE DE EX MA

Reordering limited, especially with ”deeper” (more stages) pipelines
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Pipeline Forwarding

Reordering instructions has limitations

Pipeline Forwarding: Make result available to earlier stages before writeback

xor x10, x1, x2 0

slli x11, x10, 2 1

add x3, x7, x8 2

sll x9, x7, x10 3

FE DE EX MA WB

FE DE EX MA WB

FE DE EX MA WB

FE DE EX MA WB
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Pipeline Forwarding (simplified)

PC

+
4

instruction
memory

DEIF

rs1, rs2

imm

opcode

EX

data
memory

MA WB
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Data Hazard (continued)

Are we fine now?

lw x4, 8(x2)

addi x5, x4, 3

sll x6, x4, x5

andi x5, x6, 3

sw x5, 4(x2)

There are other data dependencies
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Background: Variables and Registers

Compiler generates intermediate representation: instructions from code, variables as symbols

Example: Static Single Assignment Form (versions of variables)

int f(int *a, int b) {

return a[0]+a[1]+a[2]-b;

}

define i32 @f(i32* %0, i32 %1) #0 {

%3 = load i32, i32* %0, align 4

%4 = getelementptr inbounds i32, i32* %0, i64 1

%5 = load i32, i32* %4, align 4

%6 = getelementptr inbounds i32, i32* %0, i64 2

%7 = load i32, i32* %6, align 4

%8 = sub i32 %3, %1

%9 = add i32 %8, %5

%10 = add i32 %9, %7

ret i32 %10

}

At this point we only have the data dependencies from above
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Background: Register Allocation

Compiler generates machine code, unbound number of symbols must be mapped to registers

define i32 @f(i32* %0, i32 %1) #0 {

%3 = load i32, i32* %0, align 4

%4 = getelementptr inbounds i32, i32* %0, i64 1

%5 = load i32, i32* %4, align 4

%6 = getelementptr inbounds i32, i32* %0, i64 2

%7 = load i32, i32* %6, align 4

%8 = sub i32 %3, %1

%9 = add i32 %8, %5

%10 = add i32 %9, %7

ret i32 %10

}

f:

lw a2, 0(a0)

lw a3, 4(a0)

lw a0, 8(a0)

sub a1, a2, a1

add a1, a1, a3

addw a0, a0, a1

ret

Problem: Registers are scarce (RISC-V 31, minus ABI registers)
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Data Hazards
Limited availability of registers forces compiler to reuse registers, limits CPU optimizations

Read-After-Write dependency, also True Dependency
• Dependency from before
• Mostly eliminated by forwarding

Write-After-Read, also Anti-Dependency
• Register is used for another symbol versions
• Reordering would eliminate the required value

Write-After-Write, also Output Dependency
• Register is used for another symbol versions
• Reordering would switch values

Read-after-Read is not a hazard

addi x3, x1, 3

slli x4, x2, x3

addi x3, x4, 3

lw x4, 0(x2)

slli x3, x2, 8

addi x3, x5, 7
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Data Flow Graph
Data flow graph can be used to identify instruction level parallelism

Graph of data dependencies
• Each instruction is a vertex
• Each dependency is an edge

lw x4, 8(x2)0

addi x5, x4, 31

sll x6, x4, x52

andi x5, x6, 33

sw x5, 4(x2)4

0

1

2

3

4

R
A
W

R
A
W

R
A
W

R
A
W
,
W
A
R

W
A
W

R
A
W

Computer Architecture – Chapter 3 – CPU Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 23 ©b



Control hazards

So far: data dependencies, instructions are sequential

But they are not sequential:
• Branch: Two possible ”paths” in control flow
• Which instruction to fetch next?
• Decision depends on EX stage

0

1 1’

2 2’

tru
e false

beq x10, x1, -16

slli x11, x10, 2

add x3, x7, x8

FE DE EX MA WB

FE DE EX MA WB

FE DE EX MA
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Influence of Hazards on IPC
Recap: IPC of 1 is ideal

RAW: Fundamental impact
• Example: Every fourth instruction depends on result, penalty: 2 cycles

CPI = 1 +
1

4
· 2⇒ IPC =

1

CPI
=

1

1 +
1

4
· 2

=
2

3

• Nearly entirely solved by forwarding

WAW and WAR: Result from register allocation
• For simple pipeline they are not important, but limit optimizations (see part 4)

Control Hazards: Many branches, impact considerably height
• Waiting for decision is penalty, can we guess it? (remain of this part)
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Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution
• Branch prediction: Reduce the impact of branch decisions
• Other kinds of speculation: Address, data, ...

Parallelism
• Instruction Level Parallelism (ILP)

I Pipelining
I Superscalar execution, out-of-order execution (lecture part 4)

• Data parallelism
I Data vectors, single instruction multiple data

• Thread parallelism
I Execution of multiple different instruction streams
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Branch Prediction: Motivation

Branches are problematic for pipelining
• Decision delayed until EX stage
• Stall pipeline until decision made ú IPC goes down

Branch predition:
• Execute one of the paths speculatively
• Withdraw execution if decision is different to speculation

Impact on IPC:
• IPC=1 if we always select the right path
• IPC<1 if we select wrong path, misprediction penalty

Problem: Which path to predict?
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Branch Prediction and the IPC
Parameters
• b: Branch rate (relative number of branch instructions)
• m: Misprediction rate (how many of branches are wrongly predicted)
• p: Penalty for mispredicts (extra cycles to flush pipeline)

IPC =
1

1 + b ·m · p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

m
IP

C

p = 2
p = 5
p = 10
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Reduce the Impact of Branches

Avoid Branches
Replace branch instructions with other instructions

Predict Branches
• The deeper the pipeline, the more expensive (lower IPC) mispredicts become
• Increasing the rate of correct predictions has significant impact
• Two types of branch prediction

I Static branch prediction: Only use information at hand
I Dynamich branch prediction: Keep book about previous decisions
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Avoid Branches

Conditional instructions
• Instructions that are only executed based on flag, see part 2
• Not in RISC-V, example ARM:

cmp r1, r2

subgt r1, r1, r2

Modify code, example loop unrolling
• Rewrite loops in repeating code sequences
• Reduces number of branches, but increases code size
• This is most often done by the compiler (inner loops, few iterations)
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Loop Unrolling

Example: 3 nested loops

for (int i=0; i<3; i++)

for (int j=0; j<3; j++)

for (int k=0; k<3; k++)

Z[i][j] += X[i][k] * Y[k][j];

Loop unrolling of most inner loop:

for (int i=0; i<3; i++)

for (int j=0; j<3; j++)

Z[i][j] += X[i][0] * X[0][j] + X[i][1] * X[0][1]

+ X[i][2] * X[2][j];

Computer Architecture – Chapter 3 – CPU Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Static Branch Prediction

Predict if branch is taken or not solely based on the instruction

User-controlled
• Use a bit in opcode to indicate if branch is probable
• Generally useful for loop counters
• Examples in: PowerPC, Alpha, MMIX
• Not in RISC-V: Coding space is too precious and the result is not better than what

hardware-based branch prediction (remain of this part) can achieve

Machine decision
• Predict based on inspection of the instruction
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Static Branch Prediction: Always

Observation: Probability of branch taken is 60-70%

Idea: Always predict the jump

Assumptions:
• 20% of instructions are branches
• 70% of branches are taken
• Misprediction penalty: 5 cycles (realistic for 11-15 stage pipeline)

What is the IPC?

IPC =
1

1 + 0.2 · (1− 0.7) · 5
=

1

1.3
= 0.77
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Static Branch Prediction: Direction

Look closer at branches

Observation: Differences by branch direction

Backward branch

beq x1,x2,-16ca. 90%

Forward branch

beq x1,x2,24ca. 50%
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Static Branch Prediction with Direction: IPC

Assumptions:
• 80% of branches are backwards branches
• Branch taken 90%/50% for backward/forward branch

Impact on IPC:

CPI = 1 + 0.2 · (0.8 · (1− 0.9) + 0.2 · (1− 0.5)) · 5 = 1, 18

IPC =
1

CPI
= 0, 84

1.00.77
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Dynamic Branch Prediction

Observation: Static branch prediction works well, but not for forward branch

Approach: Branch prediction depends on history

Based on correlations
• Temporal correlation

If a branch was taken recently, it will probably be taken again (loops, etc.)
• Spatial correlation

Branches on an execution path will probably behave similarly with each execution of the
path
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Dynamische Branch Prediction: 1-bit Predictor

Idea: Consider last branch decision

1 bit counter/state machine

0 1

Branch taken, penalty

Branch not taken, penalty

Branch

not taken

Branch

taken
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1-bit Predictor: Example

Predictor

0beqz x10, 24

PC

[0x120] FE

[0x124] slli x11, x10, 2 0

DE

FE

[0x128] add x11, x11, x8

EX

DE

FE 0

[0x12c] lw x12, 0(x11)

MA

EX

DE

FE 0

WB

MA

EX

DE

WB

MA

EX

WB

MA WB

...

[0x120] beqz x10, 24 FE 0

[0x124] slli x11, x10, 2

DE

FE 0

[0x128] add x11, x11, x8

EX

DE

FE 0

1[0x148] sll x9, x7, x10

MA

FE

WB

DE EX MA WB
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1-bit Predictor: Multiple Branches

Single bit to track all branches

Problem: Multiple branches
• Nested loop, control structures, function calls
• Share the same predictor and mispredicts

Ideal solution: One predictor per branch
• No interference, exclusive resource
• but: Need as many predictors as potential branches

Real solution: Use multiple predictors
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Multiple 1-bit Predictors

Selection of multiple predictors based on program counter

Which portion of program counter?
• Most significant bits are problematic: aliasing of adjacent branches
• Least significant bits are problematic: 3 out of 4 predictors never addressed
• Leat signigicant, non-static bits: adjacent branches map to different predictors

1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0

0 31

0x0F00138 = 00001111000000000000000100111000
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1-bit Predictor: IPC

Observation: 85% accuracy

CPI = 1 + 0.2 · (1− 0.85) · 5 = 1.15

IPC =
1

CPI
=

1

1.15
= 0.87

1.00.77
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1-bit Predictor: Limitations

Consider branch taken over time for a particular branch (1/0 branch taken/not taken)

Example: Inner loop
• Branch decisions of y loop (take loop again):

111011101110...
• Predicted: 111101110111...
• Mispredicts: 000110011001...

Outliers lead to double mispredict

How can we suppress this behavior?

for (x = 1024; x > 0; x--)

for (y = 4; y > 0; y--)

do_something(x,y);

is compiled to:

li s0, 1024

xloop: li s1, 4

yloop: mv a0, s0

mv a1, s1

jal ra, do_something

addi s1, s1, -1

bnez s1, yloop

addi s0, s0, -1

bnez s0, xloop
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2-bit Predictor

Approach: Make robust against ”outliers” (filter)
• Saturating 2-bit counter

00 01 10 11

Predict ”Branch not taken” Predict ”Branch taken”

Branch taken Branch taken Branch taken

Branch

not taken

Branch

not taken

Branch

not taken

Branch

not taken

Branch

taken

Branch taken Branch taken

Branch

not taken

Branch

not taken

When do we get a penalty?
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2-bit Predictor

Approach: Make robust against ”outliers” (filter)
• Saturating 2-bit counter

00 01 10 11

Predict ”Branch not taken” Predict ”Branch taken”

Branch taken Branch taken Branch taken

Branch

not taken

Branch

not taken

Branch

not taken

Branch

not taken

Branch

taken

Branch taken Branch taken

Branch

not taken

Branch

not taken

When do we get a penalty?
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2-bit Predictor: Improvement

Comparison to 1-bit predictor, example with nested loop

Branch taken?

1
-b

it state

predict

2
-b

it state

predict
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�

1
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...
for (x = 1024; x > 0; x--)

for (y = 4; y > 0; y--)

do_something(x,y);
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2-bit Predictor: IPC

Observation: 90% accuracy

CPI = 1 + 0.2 · (1− 0.9) · 5 = 1.1

IPC =
1

CPI
=

1

1.1
= 0.91
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2-bit Predictor: Limits

Still penalty on regular patterns:
• Recap: Nested loop iterations: 111011101110...
• Branches often show such regular patterns

Can we incorporate this regularity?
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2-Way Adaptive Predictor

Save the last branch decisions

Select predictor based on history
• Before: Selection based on PC
• Now: Use history of most recent branch decisions

The actual predictor (”2nd way”) stays the same (for example 2-bit predictor)

00100branch decision

1101101001100000001110001111111011001001010101000010011011011101

0 31Predict branch not taken
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Adaptive Predictor: Example
5 bit of history (init: 00000), 32 Predictors

2-bit predictors (init: 01)
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li s0, 1024

xloop: li s1, 4

yloop: mv a0, s0

mv a1, s1

jal ra, do_something

addi s1, s1, -1

bnez s1, yloop

addi s0, s0, -1

bnez s0, xloop

branch y

branch x
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2-Way Adaptive Global Predictor

Avoid aliasing with adding part of program counter to selection

011branch decision10000010....10110 00

Program Counter

1101101001100000001110001111111011001001010101000010011011011101

0 31

10 011

Predict branch not taken

Are we good now?
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2-Way Adaptive Local Predictor

Problem with adaptive global predictor: Branch interference
• Branches influence each other, for example: deeply nested loops, function calls

Branch History Table: Keep multiple histories for diversion based on PC

1
0
1
0

0
1
1
0

0
0
1
0

0
0
0
0

10000010....10110 00

PC bits form index to select the history

11011010011000000011100011111110110010010101010000100110110111011001000100110110000000110100010110110010011001101000111001100110

0

10 0010
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Adaptive Predictors: IPC

Observation:
• 93% accuracy for global predictor
• 94% accuracy for local predictor

1.00.77
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0.84
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ct
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0.87
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0.91
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0.94
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l

This is 1990s technology, since then accuracy is up to about 99%

Modern CPUs incorporate neural network (perceptron-based) branch predictors
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Branch Target Preciction
So far ”branch taken” prediction, but also ”branch target” needed

RISC-V: jalr rd, imm(rs1) instruction, content of rs1 unknown

Branch Target Buffer
• Content addressable memory for lookups
• Store recent jump targets into table
• Replacement strategy to update table, evicts entries

Branch program counter Last branch target

0x0400ab40 0x0400ab8c

0x04000804 0x0400aaf0

... ...

0x04000800 0x0400440c
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Return Address Stack

Problems with BTB:
• Expensive hardware (content addressable memory), limits entries
• Reduced gain for common function call patterns

Adding semantics: Return Address Stack
• jalr as part of function calls (see conventions)
• Idea: Store return address on separate hardware stack

0x0400aaf0

0x0400ab8c

0x0400440c

jal(r) ra, ...

(call)
Push ra

jalr x0, 0(ra)

(ret)
Pop ra
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Summary and Learnings

Pipelining is key to CPU performance

Hazards reduce the IPC

Pipeline optimizations based on speculative execution and parallelism

Speculative execution: Branch taken prediction and branch target prediction

Difference between predictors and predictor selection
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