HOCHSCHULE

FURANGEWANDTE
WISSENSCHAFTEN

UNCHEN

Fakultat far
Informatik und

Mathematik

COMPUTER ARCHITECTURE

Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz

Department 07 — Munich University of Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License. ©®

Course Organization

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

4th Gen
Intel® Core™ i7

Central Processing
Unit (CPU)

t Basics
Pipelining

Course Organization

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

4th Gen
Intel® Core™ i7

Central Processing
Unit (CPU)

— Basics

— Pipelining

— Compley Pipelining

- ©O®

Pipeline Optimizations

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution
® Branch prediction: Reduce the impact of branch decisions

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

® Branch prediction: Reduce the impact of branch decisions
e Other kinds of speculation: Address, data, ...

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

® Branch prediction: Reduce the impact of branch decisions
e Other kinds of speculation: Address, data, ...

Parallelism

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

® Branch prediction: Reduce the impact of branch decisions
e Other kinds of speculation: Address, data, ...

Parallelism
® Instruction Level Parallelism (ILP)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

® Branch prediction: Reduce the impact of branch decisions
e Other kinds of speculation: Address, data, ...

Parallelism
® Instruction Level Parallelism (ILP)
» Pipelining

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

® Branch prediction: Reduce the impact of branch decisions
e Other kinds of speculation: Address, data, ...

Parallelism
® Instruction Level Parallelism (ILP)
» Pipelining
» Superscalar execution, out-of-order execution (lecture part 4)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

® Branch prediction: Reduce the impact of branch decisions
e Other kinds of speculation: Address, data, ...

Parallelism
® Instruction Level Parallelism (ILP)
» Pipelining
» Superscalar execution, out-of-order execution (lecture part 4)
® Data parallelism

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

® Branch prediction: Reduce the impact of branch decisions
e Other kinds of speculation: Address, data, ...

Parallelism
® Instruction Level Parallelism (ILP)
» Pipelining
» Superscalar execution, out-of-order execution (lecture part 4)
® Data parallelism
» Data vectors, single instruction multiple data

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

® Branch prediction: Reduce the impact of branch decisions
e Other kinds of speculation: Address, data, ...

Parallelism
® Instruction Level Parallelism (ILP)
» Pipelining
» Superscalar execution, out-of-order execution (lecture part 4)
® Data parallelism
» Data vectors, single instruction multiple data
® Thread parallelism

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

® Branch prediction: Reduce the impact of branch decisions
e Other kinds of speculation: Address, data, ...

Parallelism
® Instruction Level Parallelism (ILP)
» Pipelining
» Superscalar execution, out-of-order execution (lecture part 4)
® Data parallelism
» Data vectors, single instruction multiple data
® Thread parallelism

» Execution of multiple different instruction streams

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Recap: Pipelining

IF

d M N N

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

21N 64

Recap: Pipelining ‘w

a0 B ETE

Assumption: Each instruction takes one cycle per stage

Computer Architecture — Chapter 4 — Complex Pipelining
Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 4 ©®

o F = = £ DA

Recap: Pipelining

IF §>-§> EX | | MA

Assumption: Each instruction takes one cycle per stage

® General exception:Memory accesses take multiple cycles

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 4 @@

Recap: Pipelining

IF

N B

EX

V

MA

Assumption: Each instruction takes one cycle per stage

Implementation of execute stage:

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

® General exception:Memory accesses take multiple cycles

©®

Recap: Pipelining

IF

DE

EX

MA

Assumption: Each instruction takes one cycle per stage

Implementation of execute stage:
e Basically: Arithmetic and Logical Unit (ALU)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

® General exception:Memory accesses take multiple cycles

WB

©O®

Recap: Pipelining

IF

DE

EX

MA

Assumption: Each instruction takes one cycle per stage

Implementation of execute stage:
e Basically: Arithmetic and Logical Unit (ALU)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

® General exception:Memory accesses take multiple cycles

e But also:

WB

©O®

Recap: Pipelining

IF

DE

EX

MA

Assumption: Each instruction takes one cycle per stage

Implementation of execute stage:
e Basically: Arithmetic and Logical Unit (ALU)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

® General exception:Memory accesses take multiple cycles

e But also:
» Branch offset ALU

WB

©O®

Recap: Pipelining

IF DE EX MA

Assumption: Each instruction takes one cycle per stage
® General exception:Memory accesses take multiple cycles

Implementation of execute stage:

e Basically: Arithmetic and Logical Unit (ALU)
® But also:

» Branch offset ALU

» Multiplier/Divider (RISC-V M extension)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

WB

©O®

Recap: Pipelining

IF DE EX MA

Assumption: Each instruction takes one cycle per stage
® General exception:Memory accesses take multiple cycles

Implementation of execute stage:

e Basically: Arithmetic and Logical Unit (ALU)
e But also:

» Branch offset ALU

» Multiplier/Divider (RISC-V M extension)

» Floating Point Unit (RISC-V F/D extension)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

WB

©O®

Pipeline: Functional Units

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Pipeline: Functional Units

IF

e

ALU

MUL

DIV

MA

FPU

'

Split EX into functional units (FU): Different hardware building blocks

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©®

Pipeline: Functional Units

ALU

IF

DE

MUL

DIV

MA

WB

FPU

Split EX into functional units (FU): Different hardware building blocks

Multicycle instructions: Instructions don't complete in one cycle:

Multiplier, Divider, Floating Point Unit (FPU)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Functional Units: Multicycle Pipelining

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Functional Units: Multicycle Pipelining

ALU

IF

DE

Multicycle FUs may be pipelined: Decomposition of operation

Computer Architecture — Chapter 4 — Complex Pipelining

—

MA

WB

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Functional Units: Multicycle Pipelining

ALU

IF

DE

MUL

Multicycle FUs may be pipelined: Decomposition of operation

DI\

MA

WB

FRU

Sometimes not possible: DIV often shares one unit over multiple cycles

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Functional Units: Multicycle Pipelining

ALU

MUL

IF DE MA WB
DIV

FRU

Multicycle FUs may be pipelined: Decomposition of operation
Sometimes not possible: DIV often shares one unit over multiple cycles

Allows for parallel execution of multiple instructions in one FU (not always the case)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 6 © @

Functional Units: Multicycle Pipelining

ALU
IF DE I\HM;L MA WB

FRU

Multicycle FUs may be pipelined: Decomposition of operation
Sometimes not possible: DIV often shares one unit over multiple cycles

Allows for parallel execution of multiple instructions in one FU (not always the case)

(note: In the diagram each block corresponds to one clock cycle, differently scaled)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

Multicycle Metrics ‘M

ALY
- e

Computer Architecture — Chapter 4 — Complex Pipelining
Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 7 ©®

o < = = T waco

Multicycle Metrics ‘M

ALY
- e

Latency

Computer Architecture — Chapter 4 — Complex Pipelining
Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 7 ©®

o < = = T waco

Multicycle Metrics

IF

Latency

e Minimal time for instruction to traverse a functional unit

e

Computer Architecture — Chapter 4 — Complex Pipelining

ALU

MA

FH

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©®

Multicycle Metrics

IF

Latency

e Minimal time for instruction to traverse a functional unit

Initiation Interval

e

Computer Architecture — Chapter 4 — Complex Pipelining

ALU

MA

FH

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©®

Multicycle Metrics

ALU

IF

DE

Latency

e Minimal time for instruction to traverse a functional unit

Initiation Interval

e Minimal duration between two instructions can be started in a functional unit

Computer Architecture — Chapter 4 — Complex Pipelining

MA

WB

FH

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

©O®

Multicycle Metrics

-

ALU

o

FRU
Latency Initiation Interval
(Integer) ALU
Multiplier
Divider
FPU

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

\ 3

Load-Store Access

Y

MA

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

Y

©O®

Load-Store Access

Y

MA

Memory access can be optional as most operations don't use it

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

Y

©O®

Load-Store Access

Y

Memory access can be optional as most operations don't use it

Specifically after split into functional units

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 9 @@

Load-Store Access

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

10

©O®

Load-Store Access

IF

e

ALUMA

FPU

'

In pipeline with FUs, MA can be an optional extra stage after ALU

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

10

©®

Load-Store Access

IF

e

ALUMA

FPU

'

In pipeline with FUs, MA can be an optional extra stage after ALU

® QOther paths are not concerned

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

10

©®

Load-Store Access

ALUMA

IF

DE

MUL

In pipeline with FUs, MA can be an optional extra stage after ALU

® QOther paths are not concerned
® For ALU operations its optional to traverse MA

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

i

WB

FPU

10

©O®

Example: Only one instruction in FUs

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

11

©O®

Example: Only one instruction in FUs

Similar as before: Only one instruction can be in any FU at any time

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

11

©O®

Example: Only one instruction in FUs

Similar as before: Only one instruction can be in any FU at any time

Structural hazard for multicycle operations

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

11

©O®

Example: Only one instruction in FUs

Similar as before: Only one instruction can be in any FU at any time

Structural hazard for multicycle operations

xor x10, x1, x2 FE ‘ DE ALU ‘ WB ‘
mul x3, x7, x8 FE DE MUL MUL MUL WB

| | | | | |
sw x3, 4(x10) FE DE DE DE ALU MA WB

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 11 @@

Example: Overlap FU processing

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

12

©O®

Example: Overlap FU processing

Issue at most one instruction per cycle

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

12

©O®

Example: Overlap FU processing

Issue at most one instruction per cycle

But: multicycle instructions may still be ongoing

xor x10, x1, x2 FE ~DE ALU ~WB

| | | |
mul x3, x7, X8 FE DE MUL MUL MUL WB

| | | | |
addi x2, x2, 1 FE DE ALU WB

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 12 @@

Example: Overlap FU processing

Issue at most one instruction per cycle

But: multicycle instructions may still be ongoing

xor x10, x1, x2 FE ~DE ALU ~WB

| | | |
mul x3, x7, X8 FE DE MUL MUL MUL WB

| | | | |
addi x2, x2, 1 FE DE ALU WB

Due to different latency: Instructions can "overtake” others

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 12 @@

Out-of-Order Completion

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

13

©O®

Out-of-Order Completion

Even when started in correct order, instructions can complete out-of-order

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

.

13

©O®

Out-of-Order Completion

Even when started in correct order, instructions can complete out-of-order

Structural hazard on writeback stage, can be resolved

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

.

13

©O®

Out-of-Order Completion

Even when started in correct order, instructions can complete out-of-order
Structural hazard on writeback stage, can be resolved

Example:

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

.

13

©O®

Out-of-Order Completion ‘A

Even when started in correct order, instructions can complete out-of-order

Structural hazard on writeback stage, can be resolved

Example:
1w x3, 8(x2) FE bE ALU MA MA MA WB
| | | | |
addi x2, x2, 1 FE DE ALU WB
| | | |
bnez x2, loop FE =~ DE ALU WB

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 13 @@

Out-of-Order Completion ‘A

Even when started in correct order, instructions can complete out-of-order

Structural hazard on writeback stage, can be resolved

Example:
1w x3, 8(x2) FE DE ALU MA MA MA WB
| | | | |
addi x2, x2, 1 FE DE ALU WB
| | | |
bnez x2, loop FE DE ALU WB
Problems?

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 13 @@

Out-of-Order Completion

Even when started in correct order, instructions can complete out-of-order

Structural hazard on writeback stage, can be resolved

Example:
1w x3, 8(x2) FE DE ALU MA MA MA WB
| | | | |
addi x2, x2, 1 FE DE ALU WB
| | | |
bnez x2, loop FE DE ALU WB
Problems?

e What when there is an exception with the load?
e Example: Access fault, handled by OS, then continue

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

13

©O®

Out-of-Order Completion: Exception

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Out-of-Order Completion: Exception

Problem:

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Out-of-Order Completion: Exception

Problem:
® Following instructions completed when load exception occurs

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Out-of-Order Completion: Exception

Problem:

® Following instructions completed when load exception occurs
® Exception is handled, for example by operating system

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Out-of-Order Completion: Exception

Problem:

® Following instructions completed when load exception occurs
® Exception is handled, for example by operating system
® Processing continues with re-issuing instructions starting with 1w

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Out-of-Order Completion: Exception

Problem:

® Following instructions completed when load exception occurs

® Exception is handled, for example by operating system

® Processing continues with re-issuing instructions starting with 1w
® addi and bnez will be executed again, functional error

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Out-of-Order Completion: Exception

Problem:

® Following instructions completed when load exception occurs

® Exception is handled, for example by operating system

® Processing continues with re-issuing instructions starting with 1w
® addi and bnez will be executed again, functional error

Potential solutions

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Out-of-Order Completion: Exception

Problem:

® Following instructions completed when load exception occurs

® Exception is handled, for example by operating system

® Processing continues with re-issuing instructions starting with 1w
® addi and bnez will be executed again, functional error

Potential solutions
® Imprecise exceptions: The exception handler needs to clean up

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Out-of-Order Completion: Exception

Problem:
® Following instructions completed when load exception occurs
® Exception is handled, for example by operating system
® Processing continues with re-issuing instructions starting with 1w
® addi and bnez will be executed again, functional error

Potential solutions

® Imprecise exceptions: The exception handler needs to clean up
e Start instruction processing only after sure no exception can occur

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Out-of-Order Completion: Exception

Problem:

® Following instructions completed when load exception occurs

® Exception is handled, for example by operating system

® Processing continues with re-issuing instructions starting with 1w
® addi and bnez will be executed again, functional error

Potential solutions
® Imprecise exceptions: The exception handler needs to clean up
e Start instruction processing only after sure no exception can occur
o Buffer results and commit in correct order (forwarding needs to look there too!)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

14

©O®

Re-Order Buffer

ALUMA

F

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 15 @@

Re-Order Buffer

Split between instruction retire and architectural commit

FPU
Computer Architecture — Chapter 4 — Complex Pipelining
Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 15 @@

Re-Order Buffer

Split between instruction retire and architectural commit

Re-order buffer (ROB) buffers results after out-of-order retire, commits in-order

ALUMA

MUL

o

FFPU

IF DE

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

WB

15

.

©O®

Re-Order Buffer ‘A

Split between instruction retire and architectural commit

Re-order buffer (ROB) buffers results after out-of-order retire, commits in-order

ALUMA

MUL

D

Vv ROB
FRU

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 15 @@

Superscalarity

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

L3U

ALU

IF

ALU

IF

ROB

16

©®

Superscalarity

Execute multiple instructions in parallel

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

L3U

ALU

IF

ALU

IF

FRU

ROB

16

©®

Superscalarity

Execute multiple instructions in parallel

Usually: replicate FUs

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

L3U

ALU

ALU

FRU

ROB

Superscalarity

Execute multiple instructions in parallel

Usually: replicate FUs
e ALU is often used

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

DE

DE

WB

ROB

WB

16

Superscalarity

Execute multiple instructions in parallel

Usually: replicate FUs

e ALU is often used
e LSU as separate FU

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

DE

DE

WB

ROB

WB

16

Superscalarity

Execute multiple instructions in parallel

Usually: replicate FUs

L3U

ALU

e ALU is often used

DE

ALU

DE

e LSU as separate FU IF
Increases theoretical I[PC by number of IF
parallel instructions (issue width,
here: 2)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

WB

FPU

ROB

WB

16

©O®

Superscalarity: Example

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

17

©O®

Superscalarity: Example

Exploit instruction level parallelism

xor x10, x1, x2 FE ALU | ROB

addi x13, x13, 1 FE ALU ROB
mul x3, x7, x8 FE MUL MUL MUL ROB
addi x2, x2, 1 FE ALU ROB ROB ROB

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 17 @@

Superscalarity: Example

Exploit instruction level parallelism

FE

|
FE

xor x10, x1, x2
addi x13, x13, 1

mul x3, x7, x8

addi x2, x2, 1

Need issue width at each part of the pipeline, otherwise limits speedup

DE ALU
DE ‘ ALU
FE ‘ DE
FE ‘ DE

Computer Architecture — Chapter 4 — Complex Pipelining

ROB | WB
] |
ROB | WB
|
MUL MUL MUL ROB = WB
|
ALU ROB ROB

ROB | WB

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

Superscalarity: Example

Exploit instruction level parallelism

xor x10, x1, x2 FE DE ALU ROB | WB
]
addi x13, x13, 1 FE DE ALU ROB | WB
| | L |
mul x3, x7, x8 FE DE MUL MUL MUL ROB @ WB
| | | | |
addi x2, x2, 1 FE DE ALU ROB ROB | ROB | WB

Need issue width at each part of the pipeline, otherwise limits speedup

Instruction stream split obvious here, but how do we schedule instructions in general?

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 17 @ @

Instruction Scheduling

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage
® From sequential order (as stored in memory)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

® From sequential order (as stored in memory)
® Need to obey data dependencies

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

® From sequential order (as stored in memory)
® Need to obey data dependencies

Static Scheduling

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

® From sequential order (as stored in memory)
® Need to obey data dependencies

Static Scheduling
e Execution of instructions pre-determined

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

® From sequential order (as stored in memory)
® Need to obey data dependencies

Static Scheduling
e Execution of instructions pre-determined

Dynamic Scheduling

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

® From sequential order (as stored in memory)
® Need to obey data dependencies

Static Scheduling
e Execution of instructions pre-determined

Dynamic Scheduling
® Selection of instructions at runtime

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

® From sequential order (as stored in memory)
® Need to obey data dependencies

Static Scheduling
e Execution of instructions pre-determined

Dynamic Scheduling
® Selection of instructions at runtime

» In-order (in sequential program order)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

® From sequential order (as stored in memory)
® Need to obey data dependencies

Static Scheduling
e Execution of instructions pre-determined

Dynamic Scheduling
® Selection of instructions at runtime

» In-order (in sequential program order)
» Out-of-order (whenever instructions are ready)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

® From sequential order (as stored in memory)
® Need to obey data dependencies

Static Scheduling
e Execution of instructions pre-determined

Dynamic Scheduling
® Selection of instructions at runtime

» In-order (in sequential program order)
» Out-of-order (whenever instructions are ready)

Scheduling and Superscalarity are independent concepts

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

18

©O®

Static Scheduling: VLIW

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

ROB

19

©®

Static Scheduling: VLIW

Very Long Instruction Word (VLIW)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

ALU

=
-

—

ROB

19

©®

Static Scheduling: VLIW

Very Long Instruction Word (VLIW)

Combine multiple instructions in slots of a long " packet”

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

ROB

19

©®

Static Scheduling: VLIW

Very Long Instruction Word (VLIW)
Combine multiple instructions in slots of a long " packet”

Start complete packet once all instructions in it can be started

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

ROB

19

©®

Static Scheduling: VLIW

Very Long Instruction Word (VLIW)

Combine multiple instructions in slots of a long " packet”

Start complete packet once all instructions in it can be started

Not much hardware overhead, but compilers are hard, challenge: use slots

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

WB

WB

DE | LSU
DE ALU
DE | MU
DE D

ROB

WB

WB

» ©®

Dynamic Instruction Scheduling

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

20

©O®

Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

20

©O®

Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible
® Once structural hazards are solved: functional unit is free

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

20

©O®

Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible

® Once structural hazards are solved: functional unit is free
® Once data hazards are solved: dependencies resolved

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

20

©O®

Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible

® Once structural hazards are solved: functional unit is free
® Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

20

©O®

Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible

® Once structural hazards are solved: functional unit is free
® Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer
* Instructions are still issued in order (FIFO instruction buffer)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

20

©O®

Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible

® Once structural hazards are solved: functional unit is free
® Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer

* Instructions are still issued in order (FIFO instruction buffer)
e Where to put it? (IF-DE or DE-EX)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

20

©O®

Split the Decode Phase

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

21

©O®

Split the Decode Phase

Issue

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

21

©O®

Split the Decode Phase

Issue
® Decode instruction

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

21

©O®

Split the Decode Phase

Issue

® Decode instruction
® Check for structural hazards (can also be instruction buffer full)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

21

©O®

Split the Decode Phase

Issue

® Decode instruction
® Check for structural hazards (can also be instruction buffer full)

Read Operands

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

21

©O®

Split the Decode Phase

Issue

® Decode instruction
® Check for structural hazards (can also be instruction buffer full)

Read Operands
e Executed after data dependencies are resolved

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

21

©O®

Split the Decode Phase

Issue

® Decode instruction
® Check for structural hazards (can also be instruction buffer full)

Read Operands

e Executed after data dependencies are resolved
® Then reads the operands

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

21

©O®

Split the Decode Phase

Issue

® Decode instruction

® Check for structural hazards (can also be instruction buffer full)

Read Operands
e Executed after data dependencies are resolved

® Then reads the operands

IF

3 E

Computer Architecture — Chapter 4 — Complex Pipelining

e |

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

EX

21

©®

Scoreboard

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

22

©O®

Scoreboard

Scoreboard: Data structure to track execution

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

22

©O®

Scoreboard

Scoreboard: Data structure to track execution

Keeps all active instructions (in FUs)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

22

©O®

Scoreboard

Scoreboard: Data structure to track execution
Keeps all active instructions (in FUs)

Check current instruction for conflict

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

22

©O®

Scoreboard

Scoreboard: Data structure to track execution
Keeps all active instructions (in FUs)

Check current instruction for conflict

Instruction FU rd rsl

rs2

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

22

©O®

Scoreboard

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

23

©O®

Scoreboard

Check scoreboard for every instruction

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

23

©O®

Scoreboard

Check scoreboard for every instruction
e Structural hazard: Check if FU can start instruction

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

23

©O®

Scoreboard ‘w

Check scoreboard for every instruction

e Structural hazard: Check if FU can start instruction
® Read-after-Write: Check SB destination registers for instruction source registers

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

23

©O®

Scoreboard ‘A

Check scoreboard for every instruction
e Structural hazard: Check if FU can start instruction
® Read-after-Write: Check SB destination registers for instruction source registers
e Write-after-Read: Check SB source registers for instruction destination register

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

23

©O®

Scoreboard ‘A

Check scoreboard for every instruction
e Structural hazard: Check if FU can start instruction
® Read-after-Write: Check SB destination registers for instruction source registers
o Write-after-Read: Check SB source registers for instruction destination register
o Write-after-Write: Check SB destination register for instruction destination register

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 23 @@

Scoreboard ‘A

Check scoreboard for every instruction
e Structural hazard: Check if FU can start instruction
® Read-after-Write: Check SB destination registers for instruction source registers
o Write-after-Read: Check SB source registers for instruction destination register
o Write-after-Write: Check SB destination register for instruction destination register

Lifecycle of entries

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 23 @@

Scoreboard ‘A

Check scoreboard for every instruction

e Structural hazard: Check if FU can start instruction

® Read-after-Write: Check SB destination registers for instruction source registers

o Write-after-Read: Check SB source registers for instruction destination register

o Write-after-Write: Check SB destination register for instruction destination register

Lifecycle of entries
e Start instruction from instruction buffer once no hazards are left, add to SB

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 23

©O®

Scoreboard ‘A

Check scoreboard for every instruction
e Structural hazard: Check if FU can start instruction
® Read-after-Write: Check SB destination registers for instruction source registers
o Write-after-Read: Check SB source registers for instruction destination register
o Write-after-Write: Check SB destination register for instruction destination register

Lifecycle of entries

e Start instruction from instruction buffer once no hazards are left, add to SB
® Remove from SB once result was written

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 23

©O®

Scoreboard: Integration

scoreboard

A

A

IF

»

Computer Architecture — Chapter 4 — Complex Pipelining

f>

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

EX

24

©®

£ DA

In-Order Scoreboard Scheduling

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

25

©O®

In-Order Scoreboard Scheduling

Use scoreboard for in-order dynamic scheduling

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

25

©O®

In-Order Scoreboard Scheduling

Use scoreboard for in-order dynamic scheduling

Typical: No bypassing (complexity of many functional units)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

25

©O®

In-Order Scoreboard Scheduling

Use scoreboard for in-order dynamic scheduling
Typical: No bypassing (complexity of many functional units)

Scoreboard for in-order can be simplified

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

25

©O®

In-Order Scoreboard Scheduling

Use scoreboard for in-order dynamic scheduling
Typical: No bypassing (complexity of many functional units)

Scoreboard for in-order can be simplified
® Only the next instruction in buffer can be used

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

25

©O®

In-Order Scoreboard Scheduling

Use scoreboard for in-order dynamic scheduling
Typical: No bypassing (complexity of many functional units)

Scoreboard for in-order can be simplified
® Only the next instruction in buffer can be used

Can we have WAR and WAW for the next instruction?

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

25

©O®

In-Order Scoreboard Scheduling

Use scoreboard for in-order dynamic scheduling
Typical: No bypassing (complexity of many functional units)

Scoreboard for in-order can be simplified
® Only the next instruction in buffer can be used

Can we have WAR and WAW for the next instruction?
* No WAR as we are in order

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

25

©O®

In-Order Scoreboard Scheduling

Use scoreboard for in-order dynamic scheduling
Typical: No bypassing (complexity of many functional units)

Scoreboard for in-order can be simplified
® Only the next instruction in buffer can be used

Can we have WAR and WAW for the next instruction?

® No WAR as we are in order
® WAW can occur, hence need to track destination registers

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

25

©O®

In-Order Scoreboard Scheduling

Use scoreboard for in-order dynamic scheduling
Typical: No bypassing (complexity of many functional units)

Scoreboard for in-order can be simplified
® Only the next instruction in buffer can be used

Can we have WAR and WAW for the next instruction?
® No WAR as we are in order
® WAW can occur, hence need to track destination registers
® We only need to know the pending writes (destination registers)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

25

©O®

Scoreboard: Example

Execution Diagram

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

Instruction FU rd

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

Execution Diagram

v 1d x12, 8(x9)
1d x13, 0(x7) !
mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13
0: #1 can be started

Instruction FU rd

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

Execution Diagram

1 1d x12, 8(x9)

2 1d x13, 0(x7)
mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

0: #1 can be started
1: #2 can be started, #1 reads operands

Instruction FU rd
1 LSU x12

Computer Architecture — Chapter 4 — Complex Pipelining

26

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

Scoreboard: Example

Execution Diagram

1 1d x12, 8(x9)

2 1d x13, 0(x7)
mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

0: #1 can be started
1: #2 can be started, #1 reads operands
2. #3 is blocked (hazards)

Instruction FU rd
1 LSU x12

2 LSU x13

Computer Architecture — Chapter 4 — Complex Pipelining

26

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

Scoreboard: Example

1 1d x12, 8(x9) Execution Diagram

2 1d x13, 0(x7)
mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

0: #1 can be started

1: #2 can be started, #1 reads operands
2. #3 is blocked (hazards)

3: #1 will complete now

Instruction FU rd
1 LSU x12

2 LSU x13

Computer Architecture — Chapter 4 — Complex Pipelining

26

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

Scoreboard: Example

1 1d x12, 8(x9) Execution Diagram
2 1d x13, 0(x7) 1 a
mul x17, x13, x12 i
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13
0: #1 can be started
1: #2 can be started, #1 reads operands
2: #3 is blocked (hazards)
Instruction FU rd 131 ﬁ% x:’lilteczsor::ezljelzcc(,e ;&Wwill complete too

—+— | t5U— | —=xt2—

2 LSU x13

Computer Architecture — Chapter 4 — Complex Pipelining

26

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

Scoreboard: Example

1 1d x12, 8(x9) Execution Diagram
2 1d x13, 0(x7) . .
s mul x17, x13, x12 : L
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

. #1 can be started

. #2 can be started, #1 reads operands
: #3 is blocked (hazards)

: #1 will complete now

. #1 writes result, #2 will complete too
. #2 in WB, #3 can be started

Instruction FU rd

TR~ WNRFRO

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

Instruction FU rd

3 MUL x17

Computer Architecture — Chapter 4 — Complex Pipelining

Execution Diagram

BIWI(IN (=

SR whNEO

]
[

#1 can be started

#2 can be started, #1 reads operands
#3 is blocked (hazards)

#1 will complete now

#1 writes result, #2 will complete too
#2 in WB, #3 can be started

#4 can be started

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

Instruction FU rd
3 MUL x17
4 ALU x18

Computer Architecture — Chapter 4 — Complex Pipelining

Execution Diagram

BIWI(IN (=

NoRWNEO

#1 can be started

#2 can be started, #1 reads operands
#3 is blocked (hazards)

#1 will complete now

#1 writes result, #2 will complete too
#2 in WB, #3 can be started

#4 can be started

#5 blocked

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

Instruction FU rd
3 MUL x17
4 ALU x18

Computer Architecture — Chapter 4 — Complex Pipelining

Execution Diagram

BIWI(IN (=

NoRWNEO

#1 can be started

#2 can be started, #1 reads operands
#3 is blocked (hazards)

#1 will complete now

#1 writes result, #2 will complete too
#2 in WB, #3 can be started

#4 can be started

#5 blocked

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

1d x12, 8(x9)
1d x13, 0(x7)
mul x17, x13, x12

subi x18, x12, 2

mul x13, x12, x18
add x10, x17, x13

Instruction FU rd
3 MUL x17
— A4 — | ALY | —=x18—

Computer Architecture — Chapter 4 — Complex Pipelining

Execution Diagram

s WIN (=

oeNogRLMEO

#1 can be started

#2 can be started, #1 reads operands
#3 is blocked (hazards)

#1 will complete now

#1 writes result, #2 will complete too
#2 in WB, #3 can be started

#4 can be started

#5 blocked

#4 in WB, #5 can be started

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

1d x12, 8(x9) Execution Diagram
1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

s WIN (=

0: #1 can be started

1: #2 can be started, #1 reads operands
2. #3 is blocked (hazards)

3: #1 will complete now

4: #1 writes result, #2 will complete too
5

6

7

9:

1

Instruction FU rd

. #2 in WB, #3 can be started
. #4 can be started
. #5 blocked

#4 in WB, #5 can be started
0: #6 is blocked

3 MUL oxT

5 MUL x13

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 26 @@

Scoreboard: Example

1d x12, 8(x9) Execution Diagram
1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

s WIN (=

. #1 can be started
. #2 can be started, #1 reads operands
: #3 is blocked (hazards)

Instruction FU rd : #1 will complete now
. #2 in WB, #3 can be started
. #4 can be started
5 MUL x13 . #5 blocked

#4 in WB, #5 can be started
0: #6 is blocked

0
1
2
3
4: #1 writes result, #2 will complete too
5
6
7
9:
1

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 26 @@

Scoreboard: Example

1d x12, 8(x9) Execution Diagram
1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

s WIN (=

. #1 can be started
. #2 can be started, #1 reads operands
: #3 is blocked (hazards)

Instruction FU rd : #1 will complete now
. #2 in WB, #3 can be started
. #4 can be started
5 MUL x13 . #5 blocked

#4 in WB, #5 can be started
0: #6 is blocked

0
1
2
3
4: #1 writes result, #2 will complete too
5
6
7
9:
1

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 26 @@

Scoreboard: Example

1d x12, 8(x9) Execution Diagram
1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

s WIN (=

. #1 can be started
. #2 can be started, #1 reads operands
: #3 is blocked (hazards)

Instruction FU rd : #1 will complete now
. #2 in WB, #3 can be started
. #4 can be started
5 MUL x13 . #5 blocked

#4 in WB, #5 can be started
0: #6 is blocked

0
1
2
3
4: #1 writes result, #2 will complete too
5
6
7
9:
1

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 26 @@

Scoreboard: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

Instruction FU rd

Computer Architecture — Chapter 4 — Complex Pipelining

Execution Diagram

S (BhWIN (=

#1 can be started

#2 can be started, #1 reads operands
#3 is blocked (hazards)

#1 will complete now

#1 writes result, #2 will complete too
#2 in WB, #3 can be started

#4 can be started

#5 blocked

. #4 in WB, #5 can be started

10: #6 is blocked

14: #5 in WB, #6 can be started

05‘99’?:'?99!\.’!7‘9

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

Instruction FU rd

6 ALU x10

Computer Architecture — Chapter 4 — Complex Pipelining

Execution Diagram

S (BhWIN (=

#1 can be started

#2 can be started, #1 reads operands
#3 is blocked (hazards)

#1 will complete now

#1 writes result, #2 will complete too
#2 in WB, #3 can be started

#4 can be started

#5 blocked

. #4 in WB, #5 can be started

10: #6 is blocked

14: #5 in WB, #6 can be started

05‘99’.":'?99!\.’!—.‘9

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

Instruction FU rd

6 ALU x10

Computer Architecture — Chapter 4 — Complex Pipelining

Execution Diagram

S (BhWIN (=

#1 can be started

#2 can be started, #1 reads operands
#3 is blocked (hazards)

#1 will complete now

#1 writes result, #2 will complete too
#2 in WB, #3 can be started

#4 can be started

#5 blocked

. #4 in WB, #5 can be started

10: #6 is blocked

14: #5 in WB, #6 can be started

05‘99’?:'?99!\.’!7‘9

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Scoreboard: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

Instruction FU rd

— &6 — | ALY | —=x10—

Computer Architecture — Chapter 4 — Complex Pipelining

Execution Diagram

S (BhWIN (=

#1 can be started

#2 can be started, #1 reads operands
#3 is blocked (hazards)

#1 will complete now

#1 writes result, #2 will complete too
#2 in WB, #3 can be started

#4 can be started

#5 blocked

. #4 in WB, #5 can be started

10: #6 is blocked

14: #5 in WB, #6 can be started

05‘99’?:'?99!\.’!7‘9

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

26

©O®

Ariane CPU

Frontend D

Example:

Speculative Regime

Issue

In-order Issue

Regfile
Read

Scoreboard

Issue

|

m

X
00O WB

$

:

A
>

commit

Commit

In-order
Architechtural
Commit

r Y
PTW

LSuU —

ALU

CSR Buffer

_|: Multiplier I—

%

} Instruction Queue
instr
ITLB 15 “
F N
A
imm o~ Re-
Ll .
aligner
PC
c
3
CSR 2 taken? Compressed
Write E call/rer? Decoder
epc
mitvec Ll Decoder
epc npe
=] 3
>
2 g
s & 2
> E
£ << o
pPC g v =
Select =
o
w
E g

P

Scoreboard

| CSR
—— Write

Write

1 Regfile

Privilege Check

Exception

Frontend

Backend

https://github.com/pulp-platform/ariane/

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

to cache controller

timer

interrupt

external interrupt unit

27

©O®

https://github.com/pulp-platform/ariane/

Limits of In-Order lIssue

@ 1d x12, 8(x9)

2 1d x13, 0(x7)

3 mul x17, x13, x12
@ subi x18, x12, 2
s mul x13, x12, x18
® add x10, x17, x13

BN

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

28

©®

Limits of In-Order lIssue

©1d x12, 8(x9)

2 1d x13, 0(x7)

3 mul x17, x13, x12
‘@ subi x18, x12, 2
s mul x13, x12, x18
® add x10, x17, x13

eeeeesd

Delayed Load Instruction

©eeeeesd

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

28

©®

Limits of In-Order lIssue

1 1d x12, 8(x9) i
2 1d x13, 0(x7) ©
3 mul x17, x13, x12 . -
‘@ subi x18, x12, 2 6
s mul x13, x12, x18
© add x10, x17, x13 Delayed Load Instruction
€y
@
3
4
®
6

Recap: data flow model, approach: reorder instructions

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

28

©®

Out-of-Order Issue

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

29

©O®

Out-of-Order Issue

Start of instructions in arbitrary order

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

29

©O®

Out-of-Order Issue

Start of instructions in arbitrary order
e As soon as hazards of each instruction are resolved

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

29

©O®

Out-of-Order Issue

Start of instructions in arbitrary order

® As soon as hazards of each instruction are resolved
® |nstruction buffer has window of next N instructions

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

29

©O®

Out-of-Order Issue

Start of instructions in arbitrary order

® As soon as hazards of each instruction are resolved
® |nstruction buffer has window of next N instructions

But: Out-of-order issue does not improve very much alone!

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

29

©O®

Out-of-Order: Example

1 1d x12, 8(x9) In-Order Issue
2 1d x13, 0(x7) 5
3 mul x17, x13, x12 3
@ subi x18, x12, 2 .
s mul x13, x12, x18 6

© add x10, x17, x13

Out-of-Order lIssue

©eeeeesd

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

30

©®

Out-of-Order Limits

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

31

©O®

Out-of-Order Limits

WAW and WAR limit further reordering

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

31

©O®

Out-of-Order Limits

WAW and WAR limit further reordering
® Not real dependencies

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

31

©O®

Out-of-Order Limits

WAW and WAR limit further reordering

® Not real dependencies
e Artificially added: limitation of registers

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

31

©O®

Out-of-Order Limits

WAW and WAR limit further reordering

® Not real dependencies
e Artificially added: limitation of registers

Problem with limited registers

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

31

©O®

Out-of-Order Limits

WAW and WAR limit further reordering

® Not real dependencies
e Artificially added: limitation of registers

Problem with limited registers
® Number of registers limited by ISA

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

31

©O®

Out-of-Order Limits

WAW and WAR limit further reordering

® Not real dependencies
e Artificially added: limitation of registers

Problem with limited registers

® Number of registers limited by ISA
e Compiler optimizations limited

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

31

©O®

Out-of-Order Limits

WAW and WAR limit further reordering

® Not real dependencies
e Artificially added: limitation of registers

Problem with limited registers
® Number of registers limited by ISA
e Compiler optimizations limited
e Especially with different execution paths

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

31

©O®

Out-of-Order Limits

WAW and WAR limit further reordering

® Not real dependencies
e Artificially added: limitation of registers

Problem with limited registers

® Number of registers limited by ISA
e Compiler optimizations limited
e Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

31

©O®

Register Renaming: Example

1d x12, 8(x9) Out-of-Order Issue

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

S (B WN (=

Out-of-Order Issue with Register Renaming

S BE(W(N (-

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

32

©O®

Register Renaming

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards
® Not visible to the outside world

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards
® Not visible to the outside world

Introduced by Robert Tomasulo (1967)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards
® Not visible to the outside world

Introduced by Robert Tomasulo (1967)
® Reservation stations store instructions and renames

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards
® Not visible to the outside world

Introduced by Robert Tomasulo (1967)

® Reservation stations store instructions and renames
e Format of reservation stations (multiple entries per FU)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards
® Not visible to the outside world

Introduced by Robert Tomasulo (1967)

® Reservation stations store instructions and renames
e Format of reservation stations (multiple entries per FU)

» Op: Operation

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards
® Not visible to the outside world

Introduced by Robert Tomasulo (1967)

e Reservation stations store instructions and renames
e Format of reservation stations (multiple entries per FU)
» Op: Operation
» Qj, Qk: Reservation station that produces source registers (pending)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards
® Not visible to the outside world

Introduced by Robert Tomasulo (1967)

® Reservation stations store instructions and renames

e Format of reservation stations (multiple entries per FU)
» Op: Operation
» Qj, Qk: Reservation station that produces source registers (pending)
» Vj, Vk: Value of source register (once available)

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards
® Not visible to the outside world

Introduced by Robert Tomasulo (1967)

® Reservation stations store instructions and renames
e Format of reservation stations (multiple entries per FU)
» Op: Operation
» Qj, Qk: Reservation station that produces source registers (pending)
» Vj, Vk: Value of source register (once available)
» Busy: Reservation station is active

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Register Renaming

Approach: Use microarchitecture ("virtual” register names)

e Entirely eliminates WAR and WAW hazards
® Not visible to the outside world

Introduced by Robert Tomasulo (1967)

® Reservation stations store instructions and renames
e Format of reservation stations (multiple entries per FU)
» Op: Operation
» Qj, Qk: Reservation station that produces source registers (pending)
» Vj, Vk: Value of source register (once available)
» Busy: Reservation station is active

e Additionally: Register result status shows which RS produces registers

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

33

©O®

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34

Tomasulo: Example

1d x12, 8(x9) -
1d x13, 0(x7) 3
mul x17, x13, x12 :
subi x18, x12, 2 6
mul x13, x12, x18
add x10, x17, x13
ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk
0 1 8 - -
1 2 0 - -

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34

Tomasulo: Example

1d x12, 8(x9) -
1d x13, 0(x7) 3
mul x17, x13, x12 :
subi x18, x12, 2 6
mul x13, x12, x18
add x10, x17, x13
ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk
0 1 8 - - 3 - |- |LSUO0 |LSU1
1 2 0 - -

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

34

©O®

Tomasulo: Example

1d x12, 8(x9) -
1d x13, 0(x7) 3
mul x17, x13, x12 :
subi x18, x12, 2 6
mul x13, x12, x18
add x10, x17, x13
ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk
04 - |2 |LSUO |- 1 8 - - 3 - |- |LSUO0 |LSU1
1 2 0 - -

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

34

©O®

Tomasulo: Example

1d x12, 8(x9) -
1d x13, 0(x7) 3
mul x17, x13, x12 :
subi x18, x12, 2 6
mul x13, x12, x18
add x10, x17, x13
ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk
04 2 |[LSUO |- 1 8 = |- - 3 - |58 | LSUL
1 2 0 - - 5 - |- ALUO

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

34

©O®

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk

04 |2 3 I LSU1

16 - |- |MULO | MULL |2 0 ... |- - 5 R ALUO

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34 @@

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk

04 |2 3 I LSU1

16 - |- |MULO | MULL |2 0 ... |- - 5 R ALUO

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34 @@

Tomasulo: Example

1d x12, 8(x9)
1d x13, 0(x7)
mul x17, x13, x12
subi x18, x12, 2

mul x13, x12, x18
add x10, x17, x13

B)W(N (-

Insn

Vi

ALU

Vk| Qj

Qk

Insn

LSU

i VK Qj

Qk

Insn

MUL

i VK| Qj

Qk

2

LSU1

MULO

MUL1

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

34

©O®

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU

Insn | Vj | Vk Qj Qk

Insn | Vj

LSU
Vk| Qj

Qk

Insn

MUL

i VK| Qj

Qk

LSU1

MULO | MUL1

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

34

©O®

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU

Insn | Vj | Vk Qj Qk

Insn | Vj

LSU
Vk| Qj

Qk

Insn

MUL

i VK| Qj

Qk

LSU1

MULO | MUL1

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

34

©O®

Tomasulo: Example

1d x12, 8(x9)
1d x13, 0(x7)
mul x17, x13, x12
subi x18, x12, 2

mul x13, x12, x18
add x10, x17, x13

B)W(N (-

Insn

Vi

ALU

Vk| Qj

Qk

Insn

LSU

i VK Qj

Qk

Insn

MUL

i VK| Qj

Qk

MULO

MUL1

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

34

©O®

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU

Insn | Vj | Vk Qj Qk

Insn | Vj

LSU
Vk| Qj

Qk

Insn

MUL

i VK| Qj

Qk

MULO | MUL1

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

34

©O®

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk

16 - |... |MULO | MULE 5 — = |- -

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk

16 - |... |MULO

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34

Tomasulo: Example

1d x12, 8(x9)

1d x13, 0(x7)

mul x17, x13, x12
subi x18, x12, 2
mul x13, x12, x18
add x10, x17, x13

B)W(N (-

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk|Qj Qk Insn | Vj | Vk Qj Qk

16 - |... |MULO

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34

Tomasulo: Example

1 1d x12, 8(x9)
2 1d x13, 0(x7)
3 mul x17, x13, x12
‘@ subi x18, x12, 2
s mul x13, x12, x18
© add x10, x17, x13

©@eeeesd

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk Qj Qk Insn | Vj | Vk Qj Qk

16 e | [MULS

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34 @@

Tomasulo: Example

1 1d x12, 8(x9)
2 1d x13, 0(x7)
3 mul x17, x13, x12
‘@ subi x18, x12, 2
s mul x13, x12, x18
© add x10, x17, x13

©@eeeesd

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk Qj Qk Insn | Vj | Vk Qj Qk

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34 @@

Tomasulo: Example

1 1d x12, 8(x9)
2 1d x13, 0(x7)
3 mul x17, x13, x12
‘@ subi x18, x12, 2
s mul x13, x12, x18
© add x10, x17, x13

©@eeeesd

ALU LSU MUL
Insn | Vj | Vk Qj Qk Insn | Vj | Vk Qj Qk Insn | Vj | Vk Qj Qk

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences 34 @@

Tomasulo: Example

1 1d x12, 8(x9)
2 1d x13, 0(x7)
3 mul x17, x13, x12
@ subi x18, x12, 2
s mul x13, x12, x18
© add x10, x17, x13

©eeeeesd

ALU
Insn | Vj Vk Qj Qk Insn | Vj

LSU

Vk

Qk

Insn

MUL

Vk

Qk

Computer Architecture — Chapter 4 — Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz — Department 07 — Munich University of Applied Sciences

34

©®

