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Pipeline Optimizations

Goal: Bring IPC up (near to one or even above)

Speculative Execution

• Branch prediction: Reduce the impact of branch decisions
• Other kinds of speculation: Address, data, ...

Parallelism

• Instruction Level Parallelism (ILP)

I Pipelining
I Superscalar execution, out-of-order execution (lecture part 4)

• Data parallelism

I Data vectors, single instruction multiple data

• Thread parallelism

I Execution of multiple different instruction streams
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Recap: Pipelining

IF DE EX MA WB

Assumption: Each instruction takes one cycle per stage

• General exception:Memory accesses take multiple cycles

Implementation of execute stage:

• Basically: Arithmetic and Logical Unit (ALU)
• But also:

I Branch offset ALU
I Multiplier/Divider (RISC-V M extension)
I Floating Point Unit (RISC-V F/D extension)
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Pipeline: Functional Units

IF DE

ALU

MUL

DIV

FPU

MA WB

Split EX into functional units (FU): Different hardware building blocks

Multicycle instructions: Instructions don’t complete in one cycle:
Multiplier, Divider, Floating Point Unit (FPU)
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Functional Units: Multicycle Pipelining

IF DE

ALU

MUL

DIV

FPU

MA WB

Multicycle FUs may be pipelined: Decomposition of operation

Sometimes not possible: DIV often shares one unit over multiple cycles

Allows for parallel execution of multiple instructions in one FU (not always the case)

(note: In the diagram each block corresponds to one clock cycle, differently scaled)
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Multicycle Metrics

IF DE

ALU

MUL

DIV

FPU

MA WB

Latency

• Minimal time for instruction to traverse a functional unit

Initiation Interval

• Minimal duration between two instructions can be started in a functional unit
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Multicycle Metrics

IF DE

ALU

MUL

DIV

FPU

MA WB

Latency Initiation Interval
(Integer) ALU

Multiplier

Divider

FPU
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Load-Store Access

EX
MA

Memory access can be optional as most operations don’t use it

Specifically after split into functional units
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Load-Store Access

IF DE

ALUMA

MUL

DIV

FPU

WB

In pipeline with FUs, MA can be an optional extra stage after ALU

• Other paths are not concerned
• For ALU operations its optional to traverse MA
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Example: Only one instruction in FUs

Similar as before: Only one instruction can be in any FU at any time

Structural hazard for multicycle operations

xor x10, x1, x2

mul x3, x7, x8

sw x3, 4(x10)

FE DE ALU WB

FE DE MUL MUL MUL WB

FE DE DE DE ALU MA WB
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Example: Overlap FU processing

Issue at most one instruction per cycle

But: multicycle instructions may still be ongoing

xor x10, x1, x2

mul x3, x7, x8

addi x2, x2, 1

FE DE ALU WB

FE DE MUL MUL MUL WB

FE DE ALU WB

Due to different latency: Instructions can ”overtake” others
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Out-of-Order Completion

Even when started in correct order, instructions can complete out-of-order

Structural hazard on writeback stage, can be resolved

Example:

lw x3, 8(x2)

addi x2, x2, 1

bnez x2, loop

FE DE ALU MA MA MA WB

FE DE ALU WB

FE DE ALU WB

Problems?

• What when there is an exception with the load?
• Example: Access fault, handled by OS, then continue
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Out-of-Order Completion: Exception

Problem:

• Following instructions completed when load exception occurs
• Exception is handled, for example by operating system
• Processing continues with re-issuing instructions starting with lw
• addi and bnez will be executed again, functional error

Potential solutions

• Imprecise exceptions: The exception handler needs to clean up
• Start instruction processing only after sure no exception can occur
• Buffer results and commit in correct order (forwarding needs to look there too!)
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Re-Order Buffer

Split between instruction retire and architectural commit

Re-order buffer (ROB) buffers results after out-of-order retire, commits in-order

IF DE

ALUMA

MUL

DIV

FPU

WB
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Superscalarity

Execute multiple instructions in parallel

Usually: replicate FUs

• ALU is often used
• LSU as separate FU

Increases theoretical IPC by number of
parallel instructions (issue width,
here: 2)

IF

IF

DE

DE

LSU

ALU

ALU

MUL

DIV

FPU

ROB

WB

WB
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Superscalarity: Example

Exploit instruction level parallelism

xor x10, x1, x2

addi x13, x13, 1

mul x3, x7, x8

addi x2, x2, 1

FE DE ALU ROB WB

FE DE ALU ROB WB

FE DE MUL MUL MUL ROB WB

FE DE ALU ROB ROB ROB WB

Need issue width at each part of the pipeline, otherwise limits speedup

Instruction stream split obvious here, but how do we schedule instructions in general?
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Instruction Scheduling

Scheduling: Select instructions to be started in EX stage

• From sequential order (as stored in memory)
• Need to obey data dependencies

Static Scheduling

• Execution of instructions pre-determined

Dynamic Scheduling

• Selection of instructions at runtime

I In-order (in sequential program order)
I Out-of-order (whenever instructions are ready)

Scheduling and Superscalarity are independent concepts
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Static Scheduling: VLIW

Very Long Instruction Word (VLIW)

Combine multiple instructions in slots of a long ”packet”

Start complete packet once all instructions in it can be started

Not much hardware overhead, but compilers are hard, challenge: use slots

IF

DE

DE

DE

DE

LSU

ALU

MUL

DIV

ROB

WB

WB

WB

WB
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Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible

• Once structural hazards are solved: functional unit is free
• Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer

• Instructions are still issued in order (FIFO instruction buffer)
• Where to put it? (IF-DE or DE-EX)

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible

• Once structural hazards are solved: functional unit is free
• Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer

• Instructions are still issued in order (FIFO instruction buffer)
• Where to put it? (IF-DE or DE-EX)

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible
• Once structural hazards are solved: functional unit is free

• Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer

• Instructions are still issued in order (FIFO instruction buffer)
• Where to put it? (IF-DE or DE-EX)

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible
• Once structural hazards are solved: functional unit is free
• Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer

• Instructions are still issued in order (FIFO instruction buffer)
• Where to put it? (IF-DE or DE-EX)

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible
• Once structural hazards are solved: functional unit is free
• Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer

• Instructions are still issued in order (FIFO instruction buffer)
• Where to put it? (IF-DE or DE-EX)

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible
• Once structural hazards are solved: functional unit is free
• Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer
• Instructions are still issued in order (FIFO instruction buffer)

• Where to put it? (IF-DE or DE-EX)

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Dynamic Instruction Scheduling

Approach: Start instructions as soon as possible
• Once structural hazards are solved: functional unit is free
• Once data hazards are solved: dependencies resolved

Keep next instruction(s) in buffer
• Instructions are still issued in order (FIFO instruction buffer)
• Where to put it? (IF-DE or DE-EX)

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 20 ©b



Split the Decode Phase

Issue

• Decode instruction
• Check for structural hazards (can also be instruction buffer full)

Read Operands

• Executed after data dependencies are resolved
• Then reads the operands

IF IS

IB

RO EX WB
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Scoreboard

Scoreboard: Data structure to track execution

Keeps all active instructions (in FUs)

Check current instruction for conflict

Instruction FU rd rs1 rs2
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Scoreboard

Check scoreboard for every instruction

• Structural hazard: Check if FU can start instruction
• Read-after-Write: Check SB destination registers for instruction source registers
• Write-after-Read: Check SB source registers for instruction destination register
• Write-after-Write: Check SB destination register for instruction destination register

Lifecycle of entries

• Start instruction from instruction buffer once no hazards are left, add to SB
• Remove from SB once result was written
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Scoreboard: Integration

IF IS

IB

RO EX WB

scoreboard
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In-Order Scoreboard Scheduling

Use scoreboard for in-order dynamic scheduling

Typical: No bypassing (complexity of many functional units)

Scoreboard for in-order can be simplified

• Only the next instruction in buffer can be used

Can we have WAR and WAW for the next instruction?

• No WAR as we are in order
• WAW can occur, hence need to track destination registers
• We only need to know the pending writes (destination registers)
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Scoreboard: Example

ld x12, 8(x9)

ld x13, 0(x7)

mul x17, x13, x12

subi x18, x12, 2

mul x13, x12, x18

add x10, x17, x13

1

2

3

4

5

6

Instruction FU rd

Execution Diagram

1

2

3

4

5

6

0: #1 can be started
1: #2 can be started, #1 reads operands
2: #3 is blocked (hazards)
3: #1 will complete now
4: #1 writes result, #2 will complete too
5: #2 in WB, #3 can be started
6: #4 can be started
7: #5 blocked
9: #4 in WB, #5 can be started
10: #6 is blocked
14: #5 in WB, #6 can be started
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Example: Ariane CPU

https://github.com/pulp-platform/ariane/
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Limits of In-Order Issue

ld x12, 8(x9)

ld x13, 0(x7)

mul x17, x13, x12

subi x18, x12, 2

mul x13, x12, x18

add x10, x17, x13

1

2

3

4

5

6
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6

Delayed Load Instruction

1

2

3

4

5

6

Recap: data flow model, approach: reorder instructions
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Out-of-Order Issue

Start of instructions in arbitrary order

• As soon as hazards of each instruction are resolved
• Instruction buffer has window of next N instructions

But: Out-of-order issue does not improve very much alone!
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Out-of-Order: Example

ld x12, 8(x9)

ld x13, 0(x7)

mul x17, x13, x12

subi x18, x12, 2

mul x13, x12, x18

add x10, x17, x13
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6

In-Order Issue
1
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5

6

Out-of-Order Issue
1

2

3

4

5

6
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Out-of-Order Limits

WAW and WAR limit further reordering

• Not real dependencies
• Artificially added: limitation of registers

Problem with limited registers

• Number of registers limited by ISA
• Compiler optimizations limited
• Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Out-of-Order Limits

WAW and WAR limit further reordering

• Not real dependencies
• Artificially added: limitation of registers

Problem with limited registers

• Number of registers limited by ISA
• Compiler optimizations limited
• Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Out-of-Order Limits

WAW and WAR limit further reordering
• Not real dependencies

• Artificially added: limitation of registers

Problem with limited registers

• Number of registers limited by ISA
• Compiler optimizations limited
• Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Out-of-Order Limits

WAW and WAR limit further reordering
• Not real dependencies
• Artificially added: limitation of registers

Problem with limited registers

• Number of registers limited by ISA
• Compiler optimizations limited
• Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Out-of-Order Limits

WAW and WAR limit further reordering
• Not real dependencies
• Artificially added: limitation of registers

Problem with limited registers

• Number of registers limited by ISA
• Compiler optimizations limited
• Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Out-of-Order Limits

WAW and WAR limit further reordering
• Not real dependencies
• Artificially added: limitation of registers

Problem with limited registers
• Number of registers limited by ISA

• Compiler optimizations limited
• Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Out-of-Order Limits

WAW and WAR limit further reordering
• Not real dependencies
• Artificially added: limitation of registers

Problem with limited registers
• Number of registers limited by ISA
• Compiler optimizations limited

• Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Out-of-Order Limits

WAW and WAR limit further reordering
• Not real dependencies
• Artificially added: limitation of registers

Problem with limited registers
• Number of registers limited by ISA
• Compiler optimizations limited
• Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Out-of-Order Limits

WAW and WAR limit further reordering
• Not real dependencies
• Artificially added: limitation of registers

Problem with limited registers
• Number of registers limited by ISA
• Compiler optimizations limited
• Especially with different execution paths

Approach: CPU solves problem by register renaming

Computer Architecture – Chapter 4 – Complex Pipelining

Prof. Dr.-Ing. Stefan Wallentowitz – Department 07 – Munich University of Applied Sciences 31 ©b



Register Renaming: Example

ld x12, 8(x9)

ld x13, 0(x7)

mul x17, x13, x12

subi x18, x12, 2

mul x13, x12, x18

add x10, x17, x13
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6

Out-of-Order Issue
1
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Out-of-Order Issue with Register Renaming
1

2

3

4

5

6
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Register Renaming

Approach: Use microarchitecture (”virtual” register names)

• Entirely eliminates WAR and WAW hazards
• Not visible to the outside world

Introduced by Robert Tomasulo (1967)

• Reservation stations store instructions and renames
• Format of reservation stations (multiple entries per FU)

I Op: Operation
I Qj, Qk: Reservation station that produces source registers (pending)
I Vj, Vk: Value of source register (once available)
I Busy: Reservation station is active

• Additionally: Register result status shows which RS produces registers
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Tomasulo: Example

ld x12, 8(x9)

ld x13, 0(x7)

mul x17, x13, x12

subi x18, x12, 2

mul x13, x12, x18

add x10, x17, x13
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5

6

1
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4

5

6

ALU LSU MUL
Insn Vj Vk Qj Qk Insn Vj Vk Qj Qk Insn Vj Vk Qj Qk

0
1
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